Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1695–1704 | Cite as

Rheological law of change and conformation of potato starch paste in an ultrasound field

  • Yun-Fei Zhang
  • Jian-Bin LiEmail author
  • Zeng-Yu Zhang
  • Qun-Shu Wei
  • Kun Fang
Original Paper


The rheology of potato starch paste (PSP) in an ultrasonic field was studied by an RS600 HAAKE rheometer. The effects of ultrasonic time on the rheological model and on shear thinning of PSP were studied. The thixotropy of PSP in the ultrasonic field and the spatial conformation of the PSP molecular chain were also investigated. From experiments under different ultrasonic times, PSP exhibited pseudoplastic fluid characteristics and conformed to the power law τ = k·γm (where k and m are constants). PSP has the characteristics of a Newtonian fluid after ultrasonic action. At the same shear rate, the apparent viscosity of PSP decreased with increasing ultrasonic time. The degree of shear thinning of PSP was greatly reduced, and the thixotropy of PSP was lower after ultrasonic action.


Congo red Potato starch paste Rheological model Shear thinning Spatial conformation Ultrasound field 



This study was supported by Grants from the National Natural Science Foundation (Nos. 20864001 and 31160326), a Grant from the Key Project of the Guangdong Natural Science Foundation (No. 04105934), and the Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi, Nanning 530004, China.


  1. 1.
    S.Y. Chun, B. Yoo, Steady and dynamic shear rheological properties of sweet potato flour dispersions. Eur. Food Res. Technol. 223, 313–319 (2006)CrossRefGoogle Scholar
  2. 2.
    C.S. Raina, S. Singh, A.S. Bawa, et al, Rheological properties of chemically modified rice starch model solu. J. Food Process Eng. 29, 134–148 (2006)CrossRefGoogle Scholar
  3. 3.
    G. Zurima, P.B. Elevina, Effect of acetylation on some properties of rice starch. Starch. 54, 90–94 (2002)Google Scholar
  4. 4.
    B.A. David, G.C. Elodia, C.H. Eduardo et al., Chemical modification of jack bean (Canavalia ensiformis). Starch. 54, 540–546 (2002)CrossRefGoogle Scholar
  5. 5.
    J.L. Willett, I.K. Jasbern, C.L. Swanson, Rheology of thermo-plastic starch: effects of temperature, moisture content, and additives on melt viscosity. Polym. Eng. Sci. 35, 202–210 (1995)CrossRefGoogle Scholar
  6. 6.
    A. Walter, P. IIansGerhard, R. Stuttnart, Rheological characterization of theimplastic starch materials. Starch-Starke. 50, 77–83 (1998)CrossRefGoogle Scholar
  7. 7.
    R.C. Eerlingen, H. Jacobs, K. Block, et al, Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohydr. Res. 297, 347–356 (1997)CrossRefGoogle Scholar
  8. 8.
    R. Hoover, T. Vasanthan, The flow properties of native, heat-moisture treated, and annealed starches from wheat, oat, potato and lentil. Food Biochem. 18, 67–82 (1994)CrossRefGoogle Scholar
  9. 9.
    L. Chen, Y.S. Pang, X.X. Li et al., Effect of ball milling on the crystalline structure and paste rheological properties of mung bean starch. Food Sci. 26, 126–130 (2005)Google Scholar
  10. 10.
    C.S. Raina, S. Singh, A.S. Bawa et al., Rheological properties of chemically modified rice starch model solutions. J. Food Process Eng. 29, 134–148 (2006)CrossRefGoogle Scholar
  11. 11.
    K. Morikawa, K. Nishinari, Effects of granule size and size distribution on rheological behavior of chemically modified potato starch. J. Food Sci. 67, 1388–1392 (2002)CrossRefGoogle Scholar
  12. 12.
    E. Merica, M. Lungu, Natural polymers as rheological additives. Cellul. Chem. Technol. 37, 371–383 (2003)Google Scholar
  13. 13.
    M.N. Islam, M.D. Abdul. M. AzemiBin et al., Effect of temperature and starch concentration on the intrinsic viscosity and critical concentration of Sago starch. Starch. 53, 90–94 (2001)CrossRefGoogle Scholar
  14. 14.
    D. Yoo, B.T. Yoo, Rheology of rice starch-sucrose composites. Starch-Starke. 57, 254–261 (2005)CrossRefGoogle Scholar
  15. 15.
    A. Tarrega, E. Costell, M.A. Rao, Vane yield stress of native and cross-linked starch dispersions in skimmed milk: effect of starch concentration and lambda-carrageenan addition. Food Sci. Technol. Int. 12, 253–260 (2006)CrossRefGoogle Scholar
  16. 16.
    N. Besun, B. Ozguclu, S. Peker, Shear-dependent rheological properties of starch/bentonite composite gels. Colloid Polym. Sci. 275, 567–579 (1997)CrossRefGoogle Scholar
  17. 17.
    F. Hu, L. Chen, L. Li et al., Study on the rheological characteristics of micronized potato starch (a). J. Chin. Cereals Oils Assoc. 18, 61–63 (2003)Google Scholar
  18. 18.
    C. Andrea, Bertolini, rheological properties of acidified and UV-irradiated starch. Starch. 52, 340–344 (2000)CrossRefGoogle Scholar
  19. 19.
    H. Jee-yup, T.T. Robert, Characterization of pea starches in the presence of alkali and borax. Starch. 55, 457–463 (2003)CrossRefGoogle Scholar
  20. 20.
    A.M. Amini, S.M.A. Razavi, S.A. Mortazavi, Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydr. Polym. 122, 282–292 (2015)CrossRefGoogle Scholar
  21. 21.
    W. Cheng, J. Chen, D. Liu, X. Ye, F. Ke, Impact of ultrasonic treatment on properties of starch film-forming dispersion and the resulting films. Carbohydr. Polym. 81, 707–711 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Mallakpour, L. Khodadadzadeh, Ultrasonic-assisted fabrication of starch/MWCNT glucose nanocomposites for drug delivery. Ultrason. Sonochem. 40, 402–409 (2018)CrossRefGoogle Scholar
  23. 23.
    H.Y. Kim, J.A. Han, D.K. Kweon, J.D. Park et al., Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydr. Polym. 93, 582–588 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Manchun, J. Nunthanid, S. Limmatvapirat, P. Sriamornsak, Effect of ultrasonic treatment on physical properties of tapioca starch. Adv. Mater. Res. 506, 294–297 (2012)CrossRefGoogle Scholar
  25. 25.
    G.L. Peres, D.C. Leite, N. Pesce, Ultrasound effect on molecular weight reduction of amylopectin. 67, 407–414 (2015)Google Scholar
  26. 26.
    S.S. Wong, S. Kasapis, D. Huang, Molecular weight and crystallinity alteration of cellulose via prolonged ultrasound fragmentation. Food Hydrocolloids. 26, 365–369 (2012)CrossRefGoogle Scholar
  27. 27.
    Y. Iida, T. Tuziuti, K. Yasui, A. Towata, T. Kozuka, Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov. Food Sci. Emerg. Technol. 9, 140–146 (2008)CrossRefGoogle Scholar
  28. 28.
    A.R. Jambrak, Z. Herceg, D. Šubarić, J. Babić, M. Brnčić et al., Ultrasound effect on physical properties of corn starch. Carbohydr. Polym. 79, 91–100 (2010)CrossRefGoogle Scholar
  29. 29.
    K.F. Chen, Food Rheology and Measurement (Light Industry Press, Beijing, 1989)Google Scholar
  30. 30.
    L.T. Li, F. Physics, Beijing: China Agricultural Press. (2001)Google Scholar
  31. 31.
    Y.F. Li, Y.G. Yin, W.H. Jin, Food Properties, Beijing: China Light Industry Press. (2005)Google Scholar
  32. 32.
    Y.Z. Xu, P.S. Rheology, Chengdu: Sichuan Education Publishing House. (1988)Google Scholar
  33. 33.
    Z.M. Wang, Preparation of anticoagulant microcrystalline cellulose sulphate and its structure-activity relationship, Guangzhou: South China University of Technology (PhD thesis). (2003)Google Scholar
  34. 34.
    S. Alban, J. Kraus, G. Franz, Synthesis of laminarin sulfates with anticoagulant activity. Drug Res. 42, 1005–1008 (1992)Google Scholar
  35. 35.
    M. Wang, X.L. Ding, Some properties of modified yeast glucan-CMG and its conformational behavior in solution. Chin. J. Biochem. Mol. Biol. 14, 636–640 (1998)Google Scholar
  36. 36.
    Z.Y. Liang, Y.S.C.Y. Zhang, Miao et al., Studies on the conformational behavior in the glycosaminoglycans CF2a solution. Biochem. Biophys. 26, 411–415 (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yun-Fei Zhang
    • 1
  • Jian-Bin Li
    • 1
    • 2
    Email author
  • Zeng-Yu Zhang
    • 1
  • Qun-Shu Wei
    • 1
  • Kun Fang
    • 1
  1. 1.Light Industry and Food Engineering CollegeGuangxi UniversityNanningChina
  2. 2.The Collaborative Innovation Center for Guangxi Sugar IndustryNanningChina

Personalised recommendations