Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1652–1660 | Cite as

Response surface methodology for optimization of gluten-free bread made with unripe banana flour

  • M. A. Hernández-Aguirre
  • J. J. Islas-Hernández
  • M. E. Sánchez-Pardo
  • S. L. Rodríguez-Ambriz
  • P. Osorio-DíazEmail author
Original Paper
  • 68 Downloads

Abstract

Gluten-free products have some texture drawbacks compared with gluten products. The texture of gluten-free products is improved with the addition of hydrocolloids and pregelatinized starches. The effects of hydroxypropyl methylcellulose (HPMC), pregelatinized unripe banana flour (UBF-P) and water on the quality of gluten-free bread were studied. A composite central design and response surface methodology were used. The volume, specific volume, weight, and hardness were analyzed, and image analysis of the crumb was performed. The results showed that the volume and specific volume increased with the addition of HPMC and UBF-P, while the hardness decreased. The addition of UBF-P and water increased the number and size of alveoli and affected the distribution of alveoli in crumbs. The distribution and size of the alveoli affected the physical characteristics and texture of the bread. Unripe banana flour can be used as an alternative ingredient to prepare gluten-free bread that has good quality characteristics.

Keywords

Gluten-free Unripe banana flour Hydroxypropyl methylcellulose Crumb Bread Image analysis 

Notes

Acknowledgements

The authors acknowledge the financial support granted by Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (SIP-IPN), del Instituto Politécnico Nacional (COFAA-IPN), Programa de Estímulos al Desempeño de los Investigadores del Instituto Politécnico Nacional (EDI-IPN) and Beca de Estímulo Institucional de Formación de Investigadores del Instituto Politécnico Nacional (BEIFI-IPN). MAHA is grateful for the scholarship granted by Consejo Nacional de Ciencia y Tecnología de México (CONACyT-Mexico).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    D. Schuppan, M.D. Dennis, C.P. Kelly, Nutr. Clin. Care 8(2), 54–69 (2005)Google Scholar
  2. 2.
    E. Gallagher, T.R. Gormley, E.K. Arendt, Trends Food Sci. Technol. 15, 143–152 (2004).  https://doi.org/10.1016/j.tifs.2003.09.012 CrossRefGoogle Scholar
  3. 3.
    S.A. Mir, M.A. Shah, H.R. Naik, I.A. Zargar, Trends Food Sci. Technol. 51, 49–57 (2016).  https://doi.org/10.1016/j.tifs.2016.03.005 CrossRefGoogle Scholar
  4. 4.
    A. Houben, Höchstötter, T. Becker, Eur. Food Res. Technol. 235, 195–208 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Andersson, C. Öhgren, D. Johansson, M. Kniola, M. Stading, Food Hydrocoll. 25, 1587–1595 (2011).  https://doi.org/10.1016/j.foodhyd.2010.11.028 CrossRefGoogle Scholar
  6. 6.
    D. Sabanis, C. Tzia, Food Sci. Technol. Int. 17(4), 279–291 (2011).  https://doi.org/10.1177/1082013210382350 CrossRefGoogle Scholar
  7. 7.
    F. Ronda, S. Pérez-Quirce, A. Angioloni, C. Collar, Food Hydrocoll. 32, 252–262 (2013).  https://doi.org/10.1016/j.foodhyd.2013.01.014 CrossRefGoogle Scholar
  8. 8.
    S. Pérez-Quirce, C. Collar, F. Ronda, Int. J. Food Sci. Technol. 49, 1375–1382 (2014).  https://doi.org/10.1111/ijfs.12439 CrossRefGoogle Scholar
  9. 9.
    F. Cabrera-Chávez, A.M. Calderón, A.R. De La Barca, A. Islas-Rubio, M. Marti, M.A. Marengo, F. Pagani, Bonomi, S. Iametti, LWT-Food Sci. Technol. 47(2), 421–426 (2012).  https://doi.org/10.1016/j.lwt.2012.01.040 CrossRefGoogle Scholar
  10. 10.
    M. Torbica, Hadnadev, T.D. Hadnadev, Food Res. Int. 48(1), 277–283 (2012).  https://doi.org/10.1016/j.foodres.2012.05.001 CrossRefGoogle Scholar
  11. 11.
    D. Elgeti, S.D. Nordlohne, M. Föste, M. Besl, M.H. Linden, V. Heinz, M. Jekle, T. Becker, J. Cereal Sci. 59, 41–47 (2014).  https://doi.org/10.1016/j.jcs.2013.10.010 CrossRefGoogle Scholar
  12. 12.
    N.M. Machado-Alencar, C.J. Steel, I.D. Alvim, E.C. De Morais, H.M. Andre-Bolini, LWT-Food Sci. Technol. 62(2), 1011–1018 (2015).  https://doi.org/10.1016/j.lwt.2015.02.029 CrossRefGoogle Scholar
  13. 13.
    R.P. Zandonadi, B.R.B. Assunção, L. Gandolfi, G.J. Selva, M.F. Martins, R. Pratesi, J. Acad. Nutr. Diet 112(7), 1068–1072 (2012).  https://doi.org/10.1016/j.jand.2012.04.002 CrossRefGoogle Scholar
  14. 14.
    L. Padalino, M. Mastromatteo, L. Lecce, F. Cozzolino, M.A. Del Nobile, J. Cereal Sci. 57, 333–342 (2013).  https://doi.org/10.1016/j.jcs.2012.12.010 CrossRefGoogle Scholar
  15. 15.
    G. Giuberti, A. Gallo, C. Cerioli, P. Fortunati, F. Masoero, Food Chem. 175, 43–49 (2015).  https://doi.org/10.1016/j.foodchem.2014.11.127 CrossRefGoogle Scholar
  16. 16.
    D. Lazaridou, M. Duta, N. Papageorgiou, Belc, C.G. Biliaderis, J. Food Eng. 79(3), 1033–1047 (2007).  https://doi.org/10.1016/j.jfoodeng.2006.03.032 CrossRefGoogle Scholar
  17. 17.
    I. Kim, W. Choi, Shin, Y. Kim, LWT-Food Sci Technol. 62(1), 620–627 (2015).  https://doi.org/10.1016/j.lwt.2014.03.039 CrossRefGoogle Scholar
  18. 18.
    C. Onyango, G. Unbehend, M.G. Lindhaue, Food Res. Int. 42, 949–955 (2009).  https://doi.org/10.1016/j.foodres.2009.04.011 CrossRefGoogle Scholar
  19. 19.
    E. Juárez-García, E. Agama-Acevedo, S.G. Sayago-Ayerdi, S.L. Rodríguez-Ambriz, L.A. Bello-Pérez, Plant Foods Hum. Nutr. 61, 131–137 (2006).  https://doi.org/10.1007/s11130-006-0020-x CrossRefGoogle Scholar
  20. 20.
    P. Zhang, B.R. Hamaker, Carbohydr. Polym. 87, 1552–1558 (2012).  https://doi.org/10.1016/j.carbpol.2011.09.053 CrossRefGoogle Scholar
  21. 21.
    E. Fuentes-Zaragoza, M.J. Riquelme-Navarrete, E. Sánchez-Zapata, J.A. Pérez-Álvarez, Food Res. Int. 43(4), 931–942 (2010).  https://doi.org/10.1016/j.foodres.2010.02.004 CrossRefGoogle Scholar
  22. 22.
    W. Tiboonbun, M. Sungsri-in, A. Moongngarm, Res. Rev. J. Eng. Technol. 81, 608–611 (2011)Google Scholar
  23. 23.
    C.E. Chinma, B.D. Igbabul, O.O. Omotayo, Am. J. Food Technol. 7(7), 398–408 (2012).  https://doi.org/10.3923/ajft.2012.398.408 CrossRefGoogle Scholar
  24. 24.
    C. Sarawong, Z.R. Gutiérrez, E. Berghofer, R. Schoenlechner, Int. J. Food Sci. Technol. 49(8), 1825–1833 (2014).  https://doi.org/10.1111/ijfs.12491 CrossRefGoogle Scholar
  25. 25.
    C. Sarawong, R. Schoenlechner, K. Sekiguchi, E. Berghofer, P.K.W. Ng, Food Chem. 143, 33–39 (2014).  https://doi.org/10.1016/j.foodchem.2013.07.081 CrossRefGoogle Scholar
  26. 26.
    P.C. Flores-Silva, S.L. Rodriguez-Ambriz, L.A. Bello-Pérez, J. Food Sci. 80(5), C961–C966 (2015).  https://doi.org/10.1111/1750-3841.12865 CrossRefGoogle Scholar
  27. 27.
    Mondal, A.K. Datta, J. Food Eng. 86, 465–474 (2008).  https://doi.org/10.1016/j.jfoodeng.2007.11.014 CrossRefGoogle Scholar
  28. 28.
    R. Ziobro, L. Juszczak, M. Witczek, J. Korus, J. Food Sci. Technol. 53(1), 571–580 (2015).  https://doi.org/10.1007/s13197-015-2043-5 CrossRefGoogle Scholar
  29. 29.
    S. Farris, L. Piergiovanni, J. Food Process Eng. 32, 64–87 (2009).  https://doi.org/10.1111/j.1745-4530.2007.00203.x CrossRefGoogle Scholar
  30. 30.
    b Demirkesen, G. Mert, Sumnu, S. Sahin, J. Food Eng. 96, 295–303 (2010).  https://doi.org/10.1016/j.jfoodeng.2009.08.004 CrossRefGoogle Scholar
  31. 31.
    American Association of Cereal Chemists (AACC), Approved Methods of the American Association of Cereal Chemists, 10th edn. (AACC, St. Paul, 2000)Google Scholar
  32. 32.
    X. Liu, T. Mu, H. Sun, M. Zhang, J. Chen, M.L. Fauconnier, Food Chem. (2018).  https://doi.org/10.1016/j.foodchem.2017.07.047 Google Scholar
  33. 33.
    M.E. Sánchez-Pardo, A. Ortiz-Moreno, R. Mora-Escobedo, J.J. Chanona-Pérez, H. Necoechea-Mondragón, LWT-Food Sci. Technol. 41, 620–627 (2008).  https://doi.org/10.1016/j.lwt.2007.05.003 CrossRefGoogle Scholar
  34. 34.
    C.M. Rosell, in: Flour and Breads and their Fortification in Health and Disease Prevention, ed. By V.R. Preedy, R.R. Watson, V.B. Patel, (Academic Press, New York, 2011), pp. 3–14  https://doi.org/10.1016/B978-0-12-380886-8.10001-7 CrossRefGoogle Scholar
  35. 35.
    R. Crockett, P. Le, Y. Vodovotz, J. Food Sci., 76(3), E274-E282 (2011)  https://doi.org/10.1111/j.1750-3841.2011.02088.x
  36. 36.
    M. Föste, M. Jekle, T. Becker, Carbohydr. Polym. 174, 1018–1025 (2017).  https://doi.org/10.1016/j.carbpol.2017.06.068 CrossRefGoogle Scholar
  37. 37.
    E. Agama-Acevedo, M.C. Nuñez-Santiago, J. Alvarez-Ramirez, L.A. Bello-Pérez, Carbohydr. Polym. 124, 17–24 (2015).  https://doi.org/10.1016/j.carbpol.2015.02.003 CrossRefGoogle Scholar
  38. 38.
    B.Y.T. Horigome, E. saraguchi & C. Kishimoto, Br. J. Nutr. 68, 231–244 (1992).  https://doi.org/10.1079/BJN19920080 CrossRefGoogle Scholar
  39. 39.
    M. Ovando-Martinez, S. Sáyogo-Ayerdi, E. Agama-Acevedo, I. Goñi, L.A. Bello-Pérez, Food Chem., 76(6), R1067-R1075 (2009)  https://doi.org/10.1016/j.foodchem.2008.07.035 Google Scholar
  40. 40.
    C. Sarawong, Z.R. Gutiérrez, E. Berghofer, R. Schoenlechner, K., Int. J. Food Sci. Technol. 49(8), 1825–1833 (2014).  https://doi.org/10.1111/ijfs.12491 CrossRefGoogle Scholar
  41. 41.
    G. Demirkesen, Sumnu, S. Sahin, Food Bioproc. Techol. 6(7), 1749–1758 (2013).  https://doi.org/10.1007/s11947-012-0850-5 CrossRefGoogle Scholar
  42. 42.
    M. Mariotti, M.A. Pagani, M. Lucisano, Food Hydrocoll. 30, 393–400 (2013).  https://doi.org/10.1016/j.foodhyd.2012.07.005 CrossRefGoogle Scholar
  43. 43.
    Y. Phimolsiripol, A. Mukprasirt, R. Schoenlechner, J. Cereal Sci. 5, 389–395 (2012).  https://doi.org/10.1016/j.jcs.2012.06.001 CrossRefGoogle Scholar
  44. 44.
    J.J. Pérez-Nieto, R.R. Chanona-Pérez, G.F. Farrera-Rebollo, L. Gutiérrez-López, Alamilla-Beltrán, G. Calderón-Domínguez, LWT-Food Sci. Technol. 43(3), 535–543 (2010).  https://doi.org/10.1016/j.lwt.2009.09.023 CrossRefGoogle Scholar
  45. 45.
    C. Ferrero, Food Hydrocoll. 68, 15–22 (2017).  https://doi.org/10.1016/j.foodhyd.2016.11.044 CrossRefGoogle Scholar
  46. 46.
    Y. Tebben, Shen, Y. Li, Trends Food Sci. Technol. 81, 10–14 (2018).  https://doi.org/10.1016/j.tifs.2018.08.015 CrossRefGoogle Scholar
  47. 47.
    E. Armero, C. Collar, Food Sci. Technol. Int. 2(5), 323–333 (1996).  https://doi.org/10.1177/108201329600200506 CrossRefGoogle Scholar
  48. 48.
    A. Arslan, M.R. Rakha, Khan, X. Zou, Food Measure 11(4), 1959–1968 (2017).  https://doi.org/10.1007/s11694-017-9578-2 CrossRefGoogle Scholar
  49. 49.
    S.O. Ozkoc, N. Seyhun, Food Bioprocess Technol. 8, 2500–2506 (2015).  https://doi.org/10.1007/s11947-015-1615-8 CrossRefGoogle Scholar
  50. 50.
    M. Martínez, L. Román, M. Gómez, Food Chem. 239, 295–303 (2018).  https://doi.org/10.1016/j.foodchem.2017.06.122 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Desarrollo de Productos BióticosInstituto Politécnico NacionalYautepecMexico
  2. 2.Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations