Advertisement

The optimization of solid–liquid extraction of polyphenols from olive stone by response surface methodology

  • Emine Nakilcioğlu-TaşEmail author
  • Semih Ötleş
Original Paper
  • 16 Downloads

Abstract

The polyphenol extract from olive stone was optimized by the simultaneous maximization of the yield in total phenolic content (TPC), total flavonoids content (TFC), 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity (DPPH), ferric reducing/antioxidant power (FRAP), and three individual polyphenols (hydroxytyrosol, syringic acid, and oleuropein) using response surface methodology (RSM). Extraction temperature (40, 50, and 60 °C), extraction time (30, 60, and 90 min), and solvent type (methanol, ethanol, and acetone) were identified as the main variables influencing the extraction efficiency. Face-centered central composite design (FCCD), which consists of 39 factorial experiments including 5 replicates at the central point, generated satisfactory models for the optimization of independent variables. The results showed that the extraction temperature, extraction time, and solvent type had significant effects on all responses except DPPH and FRAP. The optimum conditions for extraction temperature, extraction time, and solvent type were determined as 40 °C, 89.49 min, and methanol, respectively. These values verified with confirmation experiments, and thus, the suitability of the developed models was proven. This methodology could be preferred to ensure that polyphenol extracts were obtained efficiently from the by-products, such as the olive stone in the food industry.

Keywords

Antioxidant activity Olive stone Solid–liquid extraction Polyphenols Response surface methodology 

Notes

References

  1. 1.
    J. Saha, A. Biswas, A. Chhetri, P.K. Sarkar, Food Chem. 129(2), 507–513 (2011)CrossRefGoogle Scholar
  2. 2.
    E.M. Silva, H. Rogez, Y. Larondelle, Sep. Purif. Technol. 55(3), 381–387 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Ranic, M. Milutinovic, A.K. Ristic, S.D. Brankovic, J. Clean. Prod. 80, 69–79 (2014)CrossRefGoogle Scholar
  4. 4.
    N. Talhaoui, A. Taamalli, A.M. Gómez-Caravaca, A. Fernández-Gutiérrez, A. Segura-Carretero, Food Res. Int. 77, 92–108 (2015)CrossRefGoogle Scholar
  5. 5.
    F. Rodrigues, F.B. Pimentel, M.B.P.P. Oliveira, Ind. Crops Prod. 70, 116–124 (2015)CrossRefGoogle Scholar
  6. 6.
    E. Roselló-Soto et al., Trends Food Sci. Technol. 45(2), 296–310 (2015)CrossRefGoogle Scholar
  7. 7.
    F.J. Gomez-de la Cruz, P.J. Casanova-Pelaez, J.M. Palomar-Carnicero, F. Cruz-Peragon, Energy 75, 146–152 (2014)CrossRefGoogle Scholar
  8. 8.
    G. Rodríguez, A. Lama, R. Rodríguez, A. Jiménez, R. Guillén, J. Fernández-Bolaños, Bioresour. Technol. 99(13), 5261–5269 (2008)CrossRefGoogle Scholar
  9. 9.
    G.A.R. Oliveira, A.E. Oliveira, E.C. De Oliveira, Da, Conceição, M.I.G. Leles, Multiresponse optimization of an extraction procedure of carnosol and rosmarinic and carnosic acids from rosemary. Food Chem 211, 465–473 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, V. Herdegen, X. Li, J.U. Repke, Sep. Purif. Technol. 204, 90–97 (2018)CrossRefGoogle Scholar
  11. 11.
    Z. Ben Ahmed et al., Anal. Methods 8(31), 6107–6114 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Álvarez-Casas, C. García-Jares, M. Llompart, M. Lores, Food Chem. 157, 524–532 (2014)CrossRefGoogle Scholar
  13. 13.
    N. De Zordi et al., J. Supercrit. Fluids 95, 491–498 (2014)CrossRefGoogle Scholar
  14. 14.
    J.R. Sarkis, I. Michel, I.C. Tessaro, L.D.F. Marczak, Sep. Purif. Technol. 122, 506–514 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Brahim, F. Gambier, N. Brosse, Ind. Crops Prod. 52, 18–22 (2014)CrossRefGoogle Scholar
  16. 16.
    V.C. Bochi, M.T. Barcia, D. Rodrigues, C.S. Speroni, M.M. Giusti, H.T. Godoy, Food Chem. 164, 347–354 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Chen, Y. Zhao, S. Yu, Food Chem. 172, 543–550 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Majeed et al., Saudi. J. Biol. Sci. 23(3), 389–396 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Belwal, P. Dhyani, I.D. Bhatt, R.S. Rawal, V. Pande, Food Chem. 207, 115–124 (2016)CrossRefGoogle Scholar
  20. 20.
    B. Gullón, P. Gullón, T.A. Lú-Chau, M.T. Moreira, J.M. Lema, G. Eibes, Ind. Crops Prod. 108, 649–659 (2017)CrossRefGoogle Scholar
  21. 21.
    J.A. Singleton, V.L. & Rossi, Am. J. Enol. Vitic. 16, 144–153 (1965)Google Scholar
  22. 22.
    Y. Li, C. Guo, J. Yang, J. Wei, J. Xu, S. Cheng, Food Chem. 96(2), 254–260 (2006)CrossRefGoogle Scholar
  23. 23.
    D. Heimler, P. Vignolini, M.G. Dini, A. Romani, J. Agric. Food Chem. 53(8), 3053–3056 (2005)CrossRefGoogle Scholar
  24. 24.
    Y.-H. Chu, C.-L. Chang, H.-F. Hsu, J. Sci. Food Agric. 80(5), 561–566 (2000)CrossRefGoogle Scholar
  25. 25.
    L.M. Cheung, P.C.K. Cheung, V.E.C. Ooi, Food Chem. 81(2), 249–255 (2003)CrossRefGoogle Scholar
  26. 26.
    C. Guo et al., Nutr. Res. 23(12), 1719–1726 (2003)CrossRefGoogle Scholar
  27. 27.
    J.Z. Xu, S.Y.V. Yeung, Q. Chang, Y. Huang, Z.-Y. Chen, Br. J. Nutr. 91(6), 873–881 (2004)CrossRefGoogle Scholar
  28. 28.
    Z. Erbay, N. Koca, F. Kaymak-Ertekin, M. Ucuncu, Food Bioprod. Process. 93, 156–165 (2014)CrossRefGoogle Scholar
  29. 29.
    A.D. Assefa, R.K. Saini, Y.S. Keum, J. Food Meas. Charact. 11(2), 364–379 (2017)CrossRefGoogle Scholar
  30. 30.
    C.Y. Gan, A.A. Latiff, Food Chem. 124(3), 1277–1283 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Mukherjee, N. Mandal, A. Dey, B. Mondal, J. Food Sci. Technol. 51(11), 3301–3308 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Butsat, S. Siriamornpun, Int. Food Res. J. 23(1), 180–187 (2016)Google Scholar
  33. 33.
    F. Spafiu, A. Mischie, P. Ionita, A. Beteringhe, T. Constantinescu, A.T. Balaban, Arch. Org. Chem. 10, 174–194 (2009)Google Scholar
  34. 34.
    Q.D. Do et al., J. Food Drug Anal. 22(3), 296–302 (2014)CrossRefGoogle Scholar
  35. 35.
    J.S. Boeing, E.O. Barizão, B.C.E. Silva, P.F. Montanher, V. de Cinque, Almeida, J.V. Visentainer, Chem. Cent. J. 8(1), 48 (2014)CrossRefGoogle Scholar
  36. 36.
    R. Tabaraki, E. Heidarizadi, A. Benvidi, Sep. Purif. Technol. 98, 16–23 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of EngineeringEge UniversityBornova IzmirTurkey

Personalised recommendations