Thermodynamic Properties of Ready-to-Puff Pressure Parboiled Preconditioned Brown Rice

  • Naveen Kumar Mahanti
  • Subir Kumar ChakrabortyEmail author
Original Paper


Preconditioning of pressure parboiled brown rice was carried out at different salt concentrations (SC) 0–4% using a fluidized bed dryer at 75 ± 3 °C to obtain pressure parboiled preconditioned brown rice (PBR). The isotherm data were obtained at different moisture contents (MC) 3–25% and temperatures (T) 20–30 °C. The thermodynamic properties (isosteric enthalpy, ΔHis; isosteric entropy, ΔSis; integral enthalpy, ΔHin and integral entropy, ΔSin) of ready-to-puff PBR were calculated using the Clausius–Calpeyron and Gibbs–Helmotz equations. The individual effect of SC and T on all the thermodynamic properties was observed to be highly significant (p < 0.0001). Different categories of functions (exponential, logarithmic, rational, polynomial and power) were used to explain the relationship between individual thermodynamic properties with MC. It was observed that among all the functions the polynomial and logarithmic equations are most suitable for differential properties and integral properties, respectively.


Brown rice Isosteric enthalpy Isosteric entropy Spreading pressure Compensation theory 



  1. 1.
    FAO. A. Rice Market Monitor 2018, Volume XXI-Issue No. 1 (2018)Google Scholar
  2. 2.
    P.K. Chattopadhyay. Post-harvest technology for rice in India: a changing scenario. In: Rice is life: Scientific Perspectives for the 21st Century, K. Toriyama, K.L. Heong, B. Hardy (Eds.). Proceedings of the World Rice Research Conference held in Tokyo and Tsukuba. Los Baños, Philippines, pp. 294–296 (2004)Google Scholar
  3. 3.
    R.M. Myhara, S.S. Sablani, S.M. Al-Alawi, M.S. Taylor, LWT-Food Sci. Tech. 31(7–8), 699–706 (1998)CrossRefGoogle Scholar
  4. 4.
    P.C. Correa, A.L.D. Goneli, P.C.A. Junior, G.H.H. De Oliveira, D.S.M. Valente. Int. J. Food Sci Tech. 45(10), 2016–2022 (2010)CrossRefGoogle Scholar
  5. 5.
    N. Arslan, H. Togrul, Biosyst. Eng. 90(1), 47–61 (2005)CrossRefGoogle Scholar
  6. 6.
    S.I. Martinez-Monteagudo, F. Salais-Fierro, J. Food Sci. Technol. 51(10), 2393–2403 (2014)CrossRefGoogle Scholar
  7. 7.
    W.A.M. McMinn, T.R.A. Magee, J. Food Eng. 60, 157–165 (2003)CrossRefGoogle Scholar
  8. 8.
    C. Chen, J. Food Eng. 74(2), 178–185 (2006)CrossRefGoogle Scholar
  9. 9.
    F. Kaymak-Ertekin, A. Gedik, LWT-Food Sci. Tech. 37(4), 429–438 (2004)CrossRefGoogle Scholar
  10. 10.
    U. Siripatrawan, P. Jantawat, Food Sci. Technol. Intl. 12(6), 459–465 (2006)CrossRefGoogle Scholar
  11. 11.
    A.C. Dalgıç, H. Pekmez, K.B. Belibağlı. J. Food Sci Technol. 49(4), 439–449 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Togrul, N. Arslan, Biosyst. Eng. 95(2), 181–195 (2006)CrossRefGoogle Scholar
  13. 13.
    R. Chinnaswamy, K.R. Bhattacharya, J. Food Sci. 48(6), 1604–1608 (1983)CrossRefGoogle Scholar
  14. 14.
    S. Ouertani, S. Azzouz, L. Hassini, A. Koubaab, A. Belghith. Ind. Crop. Prod. 56, 200–210 (2014)CrossRefGoogle Scholar
  15. 15.
    N.A. Aviara, O.O. Ajibola, U.O. Dairo. Biosyst. Eng. 83(4), 423–431 (2002)CrossRefGoogle Scholar
  16. 16.
    A.B. Polatoglu, V. Bese, M. Kaya, N. Aktas, Food Bioprod. Process. 89(4), 449–456 (2011)CrossRefGoogle Scholar
  17. 17.
    A.H. Al-Muhtaseb, W.A.M. McMinn, T.R.A. Magee, J. Food Eng. 62(2), 135–142 (2004)CrossRefGoogle Scholar
  18. 18.
    I. Sergio, F. Martinez-Monteagudo, Salais-Fierro, J. Food Sci. Technol. 51(10), 2393–2403 (2014)CrossRefGoogle Scholar
  19. 19.
    O.R. Fennema, Food chemistry, 3rd edn. (Marcel Dekker, New York, 1996)Google Scholar
  20. 20.
    N.N. Potter, J.H. Hotchkiss, Food science texts series, 5th edn. (Chapman & Hall, New York, 1995)CrossRefGoogle Scholar
  21. 21.
    S. Janjai, P. Intawee, K. Tohsing, B. Mahayothee, B.K. Bala, M.A. Ashraf, J. Müller. Comput. Electron. Agr. 66(2), 209–214 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Samapundo, F. Devlieghere, B. Meuleneur, A. Atukwase, Y. Lamboni, J.M. Debevere, J. Food Eng. 79(1), 168–175 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Iguaz, P. Virseda, J. Food Eng. 79(3), 794–802 (2007)CrossRefGoogle Scholar
  24. 24.
    A.L. Benado, S.S.H. Rizvi, J. Food Sci. 50(1), 101–105 (1985)CrossRefGoogle Scholar
  25. 25.
    N. Wang, J.G. Brennan, J. Food Eng. 14(4), 269–287 (1991)CrossRefGoogle Scholar
  26. 26.
    F. Kaymak-Ertekin, M. Sultanoglu, J. Food Eng. 47(3), 225–231 (2001)CrossRefGoogle Scholar
  27. 27.
    M.P. Tolaba, C. Suarez, P. Viollaz, Dry Technol. 13(8–9), 2097–2111 (1995)CrossRefGoogle Scholar
  28. 28.
    M.P. Tolaba, C. Suarez, P. Viollaz. Dry Technol. 15(1), 137–150 (1997)CrossRefGoogle Scholar
  29. 29.
    O.O. Ajibola, N.A. Aviara, O.E. Ajetumobi, J. Food Eng. 58(4), 317–324 (2003)CrossRefGoogle Scholar
  30. 30.
    E. Tsami, D. Marinos-Kouris, Z.B. Maroulis, J. Food Sci. 55(6), 1594–1597 (1990)CrossRefGoogle Scholar
  31. 31.
    N. Kechau, M. Maalej, Dry Technol. 17(6), 1201–1213 (1999)CrossRefGoogle Scholar
  32. 32.
    E. Adam, W. Muhlbauer, A. Esper, W. Wolf, W. Spie. Dry Technol. 18(9), 2117–2129 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Agricultural and Food EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Agro Produce Processing DivisionICAR – Central Institute of Agricultural EngineeringBhopalIndia

Personalised recommendations