Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection

  • Kh. GhanbariEmail author
  • F. Nejabati
Original Paper


A novel nonenzymatic voltammetric Xanthine biosensor was constructed based on a three-dimensional porous nanocomposite of reduced graphene oxide/polypyrrole/CdO nanocomposite modified glassy carbon electrode (GCE/rGO/PPy/CdO) for measuring of Xanthine. The structure and morphology of rGO/PPy/CdO nanocomposites were characterized by field emission scanning microscopy, Raman spectroscopy, X-ray diffraction, UV–vis spectroscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. The GCE/rGO/PPy/CdO based biosensor exhibited excellent electrocatalytic activity and high stability for Xanthine oxidation. Under optimized conditions, the linearity between the current response and the Xanthine concentration was obtained in the range of 1–800 µM with a detection limit of 0.11 μM (S/N = 3). The biosensor was used to determine the Xanthine in fish meat with satisfactory results.


Nonenzymatic biosensor Xanthine Reduced graphene oxide CdO nanostructures Polypyrrole 



The authors gratefully acknowledge partial financial support from the Research Council of Alzahra University.

Supplementary material

11694_2019_57_MOESM1_ESM.docx (343 kb)
Supplementary material 1 (DOCX 343 KB)


  1. 1.
    X. Zhang, J. Dong, X. Qian, Ch Zhao, One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sensors Actuators B 221, 528–536 (2015)CrossRefGoogle Scholar
  2. 2.
    N. Cooper, R. Khosravan, C. Erdmann, J. Fiene, J.W. Lee, Quantification of uricacid, xanthine and hypoxanthine in human serum by HPLC for pharmacody-namic studies. J. Chromatogr. B 837, 1–10 (2006)CrossRefGoogle Scholar
  3. 3.
    R. Parker, W. Snedden, R.W.E. Watts, Mass-spectrometric identification of hypoxanthine and xanthine (oxypurines) in skeletal muscle from two patients with congenital xanthine oxidase deficiency (xanthinuria). Biochem. J. 115, 103–108 (1969)CrossRefGoogle Scholar
  4. 4.
    Z.K. Shihabi, M.E. Hinsdale, A.J. Bleyer, Xanthine analysis in biological fluids by capillary electrophoresis. J. Chromatogr. B 669, 163–169 (1995)CrossRefGoogle Scholar
  5. 5.
    V.K. Gupta, H. Karimi-Maleh, R. Sadegh, Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 10, 303–316 (2015)Google Scholar
  6. 6.
    G. Kh, S. Bonyadi, An electrochemical sensor based on reducedgraphene oxide decorated with polypyrrolenanofibers and zinc oxide–copper oxide p–n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan. New J. Chem. 42, 8512–8523 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Raicopol, A. Prună, C. Damian, L. Pilan, Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Res. Lett. 8, 316–323 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Ahmad, A.A. Jasim, M.J. Faruki, M.S. Rahman, K. Thambiratnam, Poly (N-vinylcarbazole)-polypyrrole/graphene oxide nanocomposites based microfiber interferometer for high stability temperature sensor. Sensors Actuators B 263, 44–53 (2017)CrossRefGoogle Scholar
  9. 9.
    K. Naka, H. Itoh, S. Park, Y. Chujo, Synthesis of nanocomposites of metal nanoparticles utilizing miscible polymers. Polym. Bull. 52, 171–176 (2004)CrossRefGoogle Scholar
  10. 10.
    H. Huang, Q. Yuan, X. Yang, Preparation and characterization of metal-chitosan nanocomposites. Colloid Surf. B 39, 31–37 (2004)CrossRefGoogle Scholar
  11. 11.
    C.H. Bhosale, A.V. Kambale, A.V. Kokate, K.Y. Rajpure, Structural, optical and electrical properties of chemically sprayed CdO thin films. Mater. Sci. Eng. B 122, 67–71 (2005)CrossRefGoogle Scholar
  12. 12.
    N. Butwong, L. Zhou, W. Ng-eontae, R. Burakham, E. Moore, S. Srijaranai, J.H.T. Luong, J.D. Glennon, A sensitive nonenzymatic hydrogen peroxide sensor using cadmium oxide nanoparticles/multiwall carbon nanotube modified glassy carbon electrode. J. Electroanal. Chem. 717–718, 41–46 (2014)CrossRefGoogle Scholar
  13. 13.
    K.B. Ravi, R. Gone, P.K. Giri, On the origin and tunability of blue and green photoluminescence from chemically derived graphene: hydrogenation and oxygenation studies. Carbon 95, 228–238 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, Y. Ma, S. Guang, F. Ke, H. Xu, Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors. Carbon 83, 79–89 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Atri, D.C. Tiwari, R. Sharma, Synthesis of reduced graphene oxide nanoscrolls embedded in polypyrrole matrix for supercapacitor applications. Synth. Met. 227, 21–28 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, E. Zhu, L. Bian, J. Hai, J. Tang, W. Tang, Robust graphene dispersion with amphiphlic perylene-polyglycidol. Mater Lett. 118, 188–191 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Kumar, A.K. Ojha, B. Walkenfort, Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation. J. Photochem. Photobiol. B 159, 111–119 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Moozarm, N.W. PeiMeng, F. Lorestani, M.R. Mahmoudian, Y.Alias, Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sensors Actuators B 209, 100–108 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Mirzazadeh, M. Lashanizadegan, Improving the catalytic activity of magnetic Fe3O4/ZnO–CdO/reduced graphene oxide for ultrasonic degradation of the organic pollutants and the green oxidation of olefins. Solid State Sci. 79, 48–57 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Pourhashem, E. Ghasemy, A. Rashidi, M.R. Vaezi, Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots. J. Alloys Compd. 731, 1112–1118 (2018)CrossRefGoogle Scholar
  21. 21.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Li, G. Xiao, C. Chen, R. Li, D. Yan, Superior dispersions of reduced graphene oxide synthesized by gallic acid as a reductant and stabilizer. J. Mater. Chem. A 1, 1481–1487 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  24. 24.
    X. Fan, Zh Yang, N. He, Hierarchical nanostructured polypyrrole/graphene composites as supercapacitor electrode. RSC Adv. 5, 15096–15102 (2015)CrossRefGoogle Scholar
  25. 25.
    G. Murugadoss, R. Jayavel, R. Thangamuthu, M.R. Kumar, PbO/CdO/ZnO and PbS/CdS/ZnS nanocomposites: studies on optical, electrochemical and thermal properties. J. Lumin. 170, 78–89 (2016)CrossRefGoogle Scholar
  26. 26.
    X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao, Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode. Electrochim. Acta 80, 346–353 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Dekker, in Laboratory Techniques in Electroanalytical Chemistry, ed. by P.T. Kissinger, W.R. Heineman (New York: Marcel Dekker, 1984), p. 82Google Scholar
  28. 28.
    N.F. Atta, M.F. El-Kady, A. Galal, Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sensors Actuators B 141, 566–574 (2009)CrossRefGoogle Scholar
  29. 29.
    J.J. Gooding, V.G. Praig, E.A. Hall, Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers. Anal. Chem. 70, 2396–2402 (1998)CrossRefGoogle Scholar
  30. 30.
    V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon nanofiber-based glucose biosensor. Anal. Chem. 78, 5538–5542 (2006)CrossRefGoogle Scholar
  31. 31.
    R. Devi, B. Batra, S. Lata, S. Yadav, C.S. Pundir, A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process. Biochem. 48, 242–249 (2013)CrossRefGoogle Scholar
  32. 32.
    B. Dalkiran, C. Kacar, P.E. Erden, E. Kilic, Amperometric xanthine biosensors based on chitosan Co3O4 multiwalled carbon nanotube modified glassy carbon electrode. Sensors Actuators B 200, 83–91 (2014)CrossRefGoogle Scholar
  33. 33.
    N. Dimcheva, E. Horozova, Z. Jordanova, An amperometric xanthine oxidase enzyme electrode based on hydrogen peroxide electroreduction. Z. Naturforsch C. 57, 883–889 (2002)CrossRefGoogle Scholar
  34. 34.
    S. Sadeghi, E. Fooladi, M. Malekaneh, A nanocomposite/crude extract enzyme-based xanthine biosensor. Anal. Biochem. 464, 51–59 (2014)CrossRefGoogle Scholar
  35. 35.
    F. Öztürk, P.E. Erden, C. Kaçar, E. Kiliç, Amperometric biosensor for xanthine determination based on Fe3O4 nanoparticles. Acta Chim. Slov. 61, 19–26 (2014)Google Scholar
  36. 36.
    R. Devi, M. Thakur, C.S. Pundir, Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens. Bioelectron. 26, 3420–3426 (2011)CrossRefGoogle Scholar
  37. 37.
    S. Çevik, Xanthine biosensor based on XO/AuNP/PtNP/MWCNT hybrid nanocomposite modified GCPE. Biotechnol. Bioprocess Eng. 21, 314–320 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Dervisevic, E. Custiuc, E. Çevik, Z. Durmus, M. Şenel, A. Durmus, Electrochemical biosensor based on REGO/Fe3O4 bionanocomposite interface for xanthine detection in fish sample. Food Control 57, 402–410 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Physics and Chemistry, School of ScienceAlzahra UniversityVanak, TehranIran

Personalised recommendations