A comparison of physicochemical stabilities of β-carotene-loaded nanoemulsions prepared with different food proteins

  • Yeon-Ji Jo
  • Mi-Jung Choi
  • Geun-Pyo Hong
  • Yun Joong KwonEmail author
Original Paper


β-Carotene nanoemulsions (BC-NEs), as potential active ingredients for water-based food systems, were stabilized with different food proteins (whey protein isolate (WPI); or sodium caseinate (SC)). The surfactant Tween 20 was used for comparison or in combination with the food proteins. The influence of heating, freezing, pH, and salts on the physical and chemical stabilities of the BC-NEs was investigated. The BC-NEs were stable to aggregation against heating, NaCl, and neutral pH, but were physically unstable against CaCl2 (WPI: 3.4 µm at > 150 mM; SC: 2.6 µm at > 10 mM) and low pH (WPI: 2.8 µm, SC: 1.3 µm at pH 3). However, the combination of Tween 20 and the proteins effectively prohibited BC-NE droplet aggregation under CaCl2 and low-pH conditions. In the chemical stability tests, BC degradation was significantly slower in the WPI-stabilized BC-NEs (WPI: 52% BC at 8 weeks) than in the others (Tween 20, SC: < 35% BC at 8 weeks) and was fastest at the most acidic pH value (pH 3; < 33% BC at 2 weeks). Therefore, this study provides useful insights into the formulation of functional BC emulsions for the commercial food and beverage industries.


β-Carotene Nanoemulsion Protein Aggregate Degradation 



This research was supported by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. 2014M3A7B4051898).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    D. Albanes, Am. J. Clin. Nutr. 69, 1345s–1350 (1999) sCrossRefGoogle Scholar
  2. 2.
    M.M.V. Naves, F.S. Moreno, Nutr. Res. 18, 1807–1824 (1998). CrossRefGoogle Scholar
  3. 3.
    D.-O. Ha, C.U. Park, M.-J. Kim, J. Lee, Food Sci. Biotechnol. 21, 607–611 (2012)CrossRefGoogle Scholar
  4. 4.
    S. A.Hentschel, R.H. Gramdorf, T. Müller, Kurz, J. Food Sci. 73, N1–N6 (2008). CrossRefGoogle Scholar
  5. 5.
    L. Cornacchia, Y.H. Roos, J. Agric. Food Chem. 59, 7013–7020 (2011)CrossRefGoogle Scholar
  6. 6.
    N. Garti, D.J. McClements, Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, 1st edn. (Woodhead Publishing, UK, 2012), pp. 211–244CrossRefGoogle Scholar
  7. 7.
    D.J. McClements, Food Emulsions: principles, Practices, and Techniques, 3rd edn. (CRC Press, Boca Raton, 2015), pp. 55–99CrossRefGoogle Scholar
  8. 8.
    U. Buranasuksombat, Y.J. Kwon, M. Turner, B. Bhandari, Food Sci. Biotechnol. 20, 793–800 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Fathi, M.-R. Mozafari, M. Mohebbi, Trends Food Sci. Technol. 23, 13–27 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Rao, E.A. Decker, H. Xiao, D.J. McClements, J. Sci. Food Agric. 93, 3175–3183 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Salvia-Trujillo, C. Qian, O. Martín-Belloso, D. McClements, Food chem. 141, 1472–1480 (2013)CrossRefGoogle Scholar
  12. 12.
    D. Xu, F. Yuan, Y. Gao, A. Panya, D.J. McClements, E.A. Decker, Food chem. 156, 374–379 (2014)CrossRefGoogle Scholar
  13. 13.
    B.-S. Chu, S. Ichikawa, S. Kanafusa, M. Nakajima, J. Sci. Food Agric. 88, 1764–1769 (2008)CrossRefGoogle Scholar
  14. 14.
    D. Djordjevic, D.J. McClements, E.A. Decker, J. Food Sci. 69, C356–C362 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Hu, D.J. McClements, E.A. Decker, J. Agric. Food Chem. 51, 1696–1700 (2003)CrossRefGoogle Scholar
  16. 16.
    K.K. Ho, K. Schroën, M.F. San Martín-González, C.C. Berton-Carabin, Food Struct. 12, 34–42 (2017)CrossRefGoogle Scholar
  17. 17.
    Y.-J. Jo, Y.-J. Kwon, Food Sci. Biotechnol. 23, 107–113 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Aoki, E.A. Decker, D.J. McClements, Food Hydrocoll. 19, 209–220 (2005)CrossRefGoogle Scholar
  19. 19.
    H. Saito, A. Kawagishi, M. Tanaka, T. Tanimoto, S. Okada, H. Komatsu, T. Handa, J. Colloid Interface Sci. 219, 129–134 (1999)CrossRefGoogle Scholar
  20. 20.
    T. Harada, K. Yokomizo, J. Am. Oil Chem. Soc. 77, 859–864 (2000)CrossRefGoogle Scholar
  21. 21.
    C. Qian, E.A. Decker, H. Xiao, D.J. McClements, Food Chem. 135, 1440–1447 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Demetriades, J.N. Coupland, D.J. McClements, J. Food Sci. 62, 342–347 (1997)CrossRefGoogle Scholar
  23. 23.
    D. Guzey, D.J. McClements, J. Agric. Food Chem. 55, 475–485 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Kulmyrzaev, R. Chanamai, D.J. McClements, Food Res. Int. 33, 15–20 (2000)CrossRefGoogle Scholar
  25. 25.
    L. Mao, D. Xu, J. Yang, F. Yuan, Y. Gao, J. Zhao, Food Technol. Biotechnol. 47, 336–342 (2009)Google Scholar
  26. 26.
    C. Berton, M.-H. Ropers, M. Viau, C. Genot, J. Agric. Food Chem. 59, 5052–5061 (2011)CrossRefGoogle Scholar
  27. 27.
    D.J. McClements, E.A. Decker, J. Food Sci. 65, 1270–1282 (2000)CrossRefGoogle Scholar
  28. 28.
    C.S. Boon, D.J. McClements, J. Weiss, E.A. Decker, J. Agric. Food Chem. 57, 2993–2998 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Mortensen, L.H. Skibsted, J. Agric. Food Chem. 48, 279–286 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Science and EngineeringKonkuk UniversitySeoulSouth Korea
  2. 2.Department of Food Science and Biotechnology of Animal ResourcesKonkuk UniversitySeoulSouth Korea
  3. 3.Department of Food Science and BiotechnologySejong UniversitySeoulSouth Korea
  4. 4.Department of Food Science and BiotechnologyKyonggi UniversitySuwonSouth Korea

Personalised recommendations