A theoretical and experimental study: the influence of different standards on the determination of total phenol content in the Folin–Ciocalteu assay

  • Mai-Rui Gao
  • Qian-Da Xu
  • Qiang He
  • Qun Sun
  • Wei-Cai ZengEmail author
Original Paper


With the aim of choosing an appropriate standard for determining total phenol content (TPC) in food extracts, a theoretical study was done to demonstrate the electronic properties of nine phenolic compounds. Besides, TPC of three different tea extracts was determined by the Folin–Ciocalteu (F–C) assay with nine phenolic compounds as the standards. The frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and ionization potential (IP) of these standards were calculated with density functional theory. Results indicated the active sites of the nine standards by FMO and MEP. Moreover, the IP value of epigallocatechin gallate was about 15% lower than that of epigallocatechin, indicating that the 3-galloy group at C ring rendered a higher reactivity in the F–C assay. TPC of green tea measured by epicatechin was about 19% lower than that of gallic acid, suggesting that epicatechin was not an appropriate standard for tea extracts. It is deduced that gallic acid is a comparably good standard among commercial standards (relative standards). However, it is recommended that researchers should not choose a universal standard for all food extracts considering the heterogeneity and diversity of polyphenols in food extracts.


Polyphenols Folin–Ciocalteu assay Frontier molecular orbitals Molecular electrostatic potential Ionization potential 



We are grateful to Prof. Bi Shi, College of Light Industry, Textile and Food Engineering, for his helpful comments and suggestions. This work was financially supported by the National Natural Science Foundation of China (Grant No. 31801548) and Sichuan Science and Technology Program (Grant Nos. 2018HH0134, 2018GZ0003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    C. Fernando, A.L. Cristina, T. Sara, J.T. Francisco, I.Q.O. María, J. Nutr. Biochem. 24, 1415–1422 (2013)CrossRefGoogle Scholar
  2. 2.
    R.D. Del, L.G. Costa, M.E. Lean, A. Crozier, Nutr. Metab. Cardiovasc. Dis. 20, 1–6 (2010)CrossRefGoogle Scholar
  3. 3.
    Y. Zhou, J. Zheng, Y. Li, D.P. Xu, S. Li, Y.M. Chen, H.B. Li, Nutrients 8, E515 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Dai, R.J. Mumper, Molecules 15, 7313–7352 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Lee, M.J. Ha, H.M. Shahbaz, J.U. Kim, H. Jang, J. Park, J. Food Eng. 238, 141–147 (2018)CrossRefGoogle Scholar
  6. 6.
    P. Pajak, R. Socha, J. Broniek, K. Krolikowska, T. Fortuna, Food Chem. 275, 69–76 (2019)CrossRefGoogle Scholar
  7. 7.
    I. Ramirez-Sanchez, L. Maya, G. Ceballos, F. Villarreal, J. Food Compos. Anal. 23, 790–793 (2010)CrossRefGoogle Scholar
  8. 8.
    G. Daniel, S.S. Janio, G.M. Laercio, S.N. Domingos, TrAC Trends Anal. Chem. 80, 266–279 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Andressa, C.L. Gisely, C.P.M. Joao, Molecules 18, 6825–6856 (2013)Google Scholar
  10. 10.
    J.C. Sánchezrangel, J. Benavides, J.B. Heredia, L. Cisneroszevallos, D.A. Jacobovelázquez, Anal. Methods 5, 5990–5999 (2013)CrossRefGoogle Scholar
  11. 11.
    V. Deepha, R. Praveena, R. Sivakumar, K. Sadasivam, Spectrochim. Acta 121, 737–745 (2014)CrossRefGoogle Scholar
  12. 12.
    A.E. Hagerman, L.G. Butler, J. Chem. Ecol. 15, 1795–1810 (1989)CrossRefGoogle Scholar
  13. 13.
    C.S. Wisdom, A. Gonzalez-Coloma, P.W. Rundel, Oecologia 72, 395–401 (1987)CrossRefGoogle Scholar
  14. 14.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  15. 15.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  16. 16.
    R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724–728 (1971)CrossRefGoogle Scholar
  17. 17.
    W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257–2261 (1972)CrossRefGoogle Scholar
  18. 18.
    Y.Z. Rong, Z.W. Wang, B. Zhao, Food Biophys. 8, 90–94 (2013)CrossRefGoogle Scholar
  19. 19.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, Gaussian 09. Revision A.1 (Gaussian, Inc, Wallingford, CT, 2009)Google Scholar
  20. 20.
    W.C. Zeng, W.C. Zhang, W.H. Zhang, Q. He, B. Shi, Food Chem. Toxicol. 58, 311–317 (2013)CrossRefGoogle Scholar
  21. 21.
    R.M. Lamuela-Raventós, V.L. Singleton, R. Orthofer, Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  22. 22.
    M. Paczkowska, K. Lewandowska, W. Bednarski, M. Mizera, A. Podborska, A. Krause, J.C. Piontek, Spectrochim. Acta 140, 132–139 (2015)CrossRefGoogle Scholar
  23. 23.
    D. Jeevitha, K. Sadasivam, R. Praveena, R. Jayaprakasam, J. Mol. Struct. 1120, 15–24 (2016)CrossRefGoogle Scholar
  24. 24.
    A.M. Mendoza-Wilson, D. Glossman-Mitnik, J. Mol. Struct. THEOCHEM 761, 97–106 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Valcic, J.A. Burr, B.N. Timmermann, D.C. Liebler, Chem. Res. Toxicol. 13, 801–810 (2000)CrossRefGoogle Scholar
  26. 26.
    N. Russo, Food Chem. 125, 288–306 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Leopoldini, N. Russo, M. Toscano, Food Chem. 125, 288–306 (2010)CrossRefGoogle Scholar
  28. 28.
    Q. Guo, B. Zhao, S. Shen, J. Hou, J. Hu, W. Xin, Biochim. Biophys. Acta 1427, 13 (1999)CrossRefGoogle Scholar
  29. 29.
    A.M. Mendoza-Wilson, S.I. Castro-Arredondo, R. R. Balandrán-Quintana. Food Chem. 161, 155–161 (2014)CrossRefGoogle Scholar
  30. 30.
    A.M. Mendoza-Wilson, M.E. Armenta-Vázquez, S.I. Castro-Arredondo, A. Espinosa-Plascencia, H. González-Ríos, A. González-León, R.R. Balandrán-Quintana, J. Mol. Struct. 1035, 61–68 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Leopoldini, F. Rondinelli, N. Russo, M. Toscano, J. Agric. Food Chem. 58, 8862 (2010)CrossRefGoogle Scholar
  32. 32.
    B. Zou, X. Dong, Z. Ge, Z. Xu, J. Du, C. Li, Eur. Food Res. Technol. 239, 385–391 (2014)CrossRefGoogle Scholar
  33. 33.
    K.R. Martin, C.G. Krueger, G. Rodriquez, M. Dreher, J.D. Reed, J. Sci. Food Agric. 89, 157–162 (2009)CrossRefGoogle Scholar
  34. 34.
    R.P. Feliciano, M.P. Shea, D. Shanmuganayagam, C.G. Krueger, A.B. Howell, J.D. Reed, J. Agric. Food Chem. 60, 4578 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Light Industry, Textile and Food EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.College of Life SciencesSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations