Bioactive compounds, antioxidant activity and some physicochemical properties of the seed and seed-oil of Mahonia aquifolium berries

  • Hacer CoklarEmail author
  • Mehmet Akbulut
Original Paper


Mahonia aquifolium berries are significant sources of anthocyanins and generally consumed fresh or processed such as juice or puree. In most cases, seeds of the berries are rest as waste. This study was aimed to find out nutritional and functional properties of M. aquifolium seed, and its oil and also to determine whether they could take place or not in the human diet. Seeds were removed from the berries which were collected from the shrubs grown in Konya, Turkey at the July 2017. Oil was obtained from the seeds by ether extraction method. Antioxidant activity, total phenolic, mineral, protein, and oil content analyses were performed on the seed, while the oil was analyzed for pigments, fatty acids, and tocols. Phenolic profile and alkaloids analyses were done in both seed and oil. The seed had significant amount of total phenolics (17.24 mg GAE/g DW) and possessed high antioxidant activity. (+)-Catechin was found to be main phenolic of the seed and oil. Oxyacanthine and berbamine were the alkaloids identified in the seed. α-Linolenic acid constituted 46.67% of the fatty acids in the oil. Omega-6:omega-3 ratio was calculated as 0.54. The oil was also rich in γ-tocotrienol (308.30 mg/kg oil). Even if low amount, α- and β-carotenes were detected in the oil. As a result, the seed and its oil are significant sources of different groups of nutritional and phytochemical compounds.


Bisbenzylisoquinoline alkaloids Chlorophyll Minerals Reflectance color Tocopherols Visible absorbance spectra 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    D. Košťálová, B. Brázdovièová, J. Tomko, Chem. Pap. 35, 279–283 (1981)Google Scholar
  2. 2.
    X. Ji, Y. Li, H. Liu, Y. Yan, J. Li, Pharm. Acta Helv. 74, 387–391 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Tadeusz, Alkaloid chemistry, biological significance, applications and ecological role. Elsevier (2007)Google Scholar
  4. 4.
    L. Grycová, J. Dostál, R. Marek, Phytochemistry 68, 150–175 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Coklar, M. Akbulut, J. Funct. Foods 35, 166–174 (2017)CrossRefGoogle Scholar
  6. 6.
    S.C. Sargi, B.C. Silva, H.M.C. Santos, P.F. Montanher, J.S. Boeing, S. Júnior, O. Oliveira, N.E. Souza, J.V. Visentainer, Food Sci. Technol. 33, 541–548 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Fazio, P. Plastina, J. Meijerink, R.F. Witkamp, B. Gabriele, Food Chem. 140, 817–824 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Helbig, V. Bohm, A. Wagner, R. Schubert, G. Jahreis, Food Chem. 111, 1043–1049 (2008)CrossRefGoogle Scholar
  9. 9.
    P. Adhikari, K.T. Hwang, M.K. Shin, B.K. Lee, S.K. Kim, S.Y. Kim, K.T. Lee, S.Z. Kim, Food Chem. 111, 687–690 (2008)CrossRefGoogle Scholar
  10. 10.
    L. Mene-Saffrane, D. DellaPenna, Plant Physiol. Biochem. 48, 301–309 (2010)CrossRefGoogle Scholar
  11. 11.
    C.K. Sen, S. Khanna, S. Roy, Life Sci. 78, 2088–2098 (2006)CrossRefGoogle Scholar
  12. 12.
    B.B. Aggarwal, C. Sundaram, S. Prasad, R. Kannappan, Biochem. Pharmacol. 80, 1613–1631 (2010)CrossRefGoogle Scholar
  13. 13.
    P.C. Calder, P. Yaqoob, Biofactors 35, 266–272 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Schmitz, J. Ecker, Prog. Lipid Res. 47, 147–155 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Akbulut, S. Calisir, T. Marakoglu, H. Coklar, J. Food Process. Eng. 32, 497–511 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Fromm, S. Bayha, D.R. Kammerer, R. Carle, J. Agric. Food Chem. 60, 10733–10742 (2012)CrossRefGoogle Scholar
  17. 17.
    M.G. Ferruzzi, J. Blakeslee, Nutr. Res. 27, 1–12 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Özcan, M. Akbulut, Food Chem. 106, 852–858 (2008)CrossRefGoogle Scholar
  19. 19.
    AOAC, Gaithersburg, Maryland, USA, 2005Google Scholar
  20. 20.
    K. Sacilik, R. Öztürk, R. Keskin, Biosyst. Eng. 86, 191–198 (2003)CrossRefGoogle Scholar
  21. 21.
    E. Savasli, O. Önder, C. Cekiç, H. Kalaycı, R. Dayıoglu, Y. Karaduman, F. Gökmen, N. Dursun, S. Gezgin, Turk. J. Agric. Food Sci. Tech. 6, 84–90 (2018)Google Scholar
  22. 22.
    H. Coklar, M. Akbulut, S. Kilinc, A. Yildirim, I. Alhassan, Not. Bot. Horti Agrobot. Cluj Napoca 46, 449–456 (2018)CrossRefGoogle Scholar
  23. 23.
    S.-S. Teh, E.J. Birch, Ultrason. Sonochem. 21, 346–353 (2014)CrossRefGoogle Scholar
  24. 24.
    V.L. Singleton, J.A. Rossi, Am. J. Enol. Viticul. 16, 144–158 (1965)Google Scholar
  25. 25.
    W. Brand-Williams, M.-E. Cuvelier, C. Berset, LWT-Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  26. 26.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radical Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  27. 27.
    I. Benzie, J. Strain, Methods Enzymol. 299, 15–27 (1998)CrossRefGoogle Scholar
  28. 28.
    N. Demir, O. Yildiz, M. Alpaslan, A. Hayaloglu, LWT-Food Sci. Technol. 57, 126–133 (2014)CrossRefGoogle Scholar
  29. 29.
    Q. Mingming, China Pharm. 20, 021 (2010)Google Scholar
  30. 30.
    N. Vingering, M. Oseredczuk, L. du Chaffaut, J. Ireland, M. Ledoux, Ol. Corps Gras Lipides 17, 185–192 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Schneider (2016) Accessed 02 Nov 2017
  32. 32.
    J. Pokorny, L. Kalinova, P. Dysseler, Pure Appl. Chem. 67, 1781–1787 (1995)CrossRefGoogle Scholar
  33. 33.
    S.-S. Teh, J. Birch, J. Food Compos Anal. 30, 26–31 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Sharma, K. Prasad, Int. J. Res. Agric. Food Sci. 4, 671–678 (2013)Google Scholar
  35. 35.
    V.Y. Ixtaina, S.M. Nolasco, M.C. Tomas, Ind. Crop Prod. 28, 286–293 (2008)CrossRefGoogle Scholar
  36. 36.
    A.K. Johansson, P.H. Kuusisto, P.H. Laakso, K.K. Derome, P.J. Sepponen, J.K. Katajisto, H.P. Kallio, Phytochemistry 44, 1421–1427 (1997)CrossRefGoogle Scholar
  37. 37.
    K. Szentmihályi, P. Vinkler, B. Lakatos, V. Illés, M. Then, Bioresour. Technol. 82, 195–201 (2002)CrossRefGoogle Scholar
  38. 38.
    H.H. Oh, K.T. Hwang, M.K. Shin, H.K. Lee, S.Z. Kim, J. Am. Oil Chem. Soc. 84, 549–555 (2007)CrossRefGoogle Scholar
  39. 39.
    S.C. Andrade, R.P.F. Guiné, F.J.A. Gonçalves, J. Food Meas. Charact. 11, 1936–1946 (2017)CrossRefGoogle Scholar
  40. 40.
    A.M. Bakowska-Barczak, A. Schieber, P. Kolodziejczyk, Agric. Food Chem. 57, 11528–11536 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Ayoub, A.C. de Camargo, F. Shahidi, Food Chem. 197, 221–232 (2016)CrossRefGoogle Scholar
  42. 42.
    C. Nergiz, S. Ötleş, Food Chem. 48, 259–261 (1993)CrossRefGoogle Scholar
  43. 43.
    C. Katare, S. Saxena, S. Agrawal, G. Prasad, P. Bisen, J. Nutr. Food Sci. 2, 2 (2012)CrossRefGoogle Scholar
  44. 44.
    W.-S. Choo, J. Birch, J.-P. Dufour, J. Food Compos. Anal. 20, 202–211 (2007)CrossRefGoogle Scholar
  45. 45.
    F. Gunstone, Vegetable Oils in Food Technology: Composition, Properties and Uses, 2nd edn. (Wiley-Blackwell, India, 2011), pp. 61–227Google Scholar
  46. 46.
    E. Ryan, K. Galvin, T.P. O’Connor, A.R. Maguire, N.M. O’Brien, Plant Food Hum. Nutr. 62, 85–91 (2007)CrossRefGoogle Scholar
  47. 47.
    J.T. Budin, W.M. Breene, D.H. Putnam, J. Am. Oil Chem. Soc. 72, 309–315 (1995)CrossRefGoogle Scholar
  48. 48.
    V. Van Hoed, N. De Clercq, C. Echim, M. Andjelkovic, E. Leber, K. Dewettinck, R. Verhe, J. Food Lipids 16, 33–49 (2009)CrossRefGoogle Scholar
  49. 49.
    B.R. Yang, M. Ahotupa, P. Maatta, H. Kallio, Food Res. Int. 44, 2009–2017 (2011)CrossRefGoogle Scholar
  50. 50.
    O. Radocaj, V. Vujasinovic, E. Dimic, Z. Basic, Eur. J. Lipid Sci. Technol. 116, 1015–1024 (2014)CrossRefGoogle Scholar
  51. 51.
    M.D. Zlatanov, J. Sci. Food Agric. 79, 1620–1624 (1999)CrossRefGoogle Scholar
  52. 52.
    J. Parry, L. Su, M. Luther, K.Q. Zhou, M.P. Yurawecz, P. Whittaker, L.L. Yu, J. Agric. Food Chem. 53, 566–573 (2005)CrossRefGoogle Scholar
  53. 53.
    K.A. Ward, R. Scarth, J.K. Daun, J.K. Vessey, Can J Plant Sci. 75, 413–436 (1995)CrossRefGoogle Scholar
  54. 54.
    A.A. Elzaawely, T.D. Xuan, H. Koyama, S. Tawata, Food Chem. 104, 1648–1653 (2007)CrossRefGoogle Scholar
  55. 55.
    A. Said, A. Huefner, E.-S.A.A. Tabl, G. Fawzy, IUFS J. Biol. 70, 39–43 (2011)Google Scholar
  56. 56.
    R. da Silva Marineli, ÉA. Moraes, S.A. Lenquiste, A.T. Godoy, M.N. Eberlin, M.R. Maróstica, LWT-Food Sci. Technol. 59, 1304–1310 (2014)CrossRefGoogle Scholar
  57. 57.
    P. Terpinc, T. Polak, D. Makuc, N.P. Ulrih, H. Abramovic, Food Chem. 131, 580–589 (2012)CrossRefGoogle Scholar
  58. 58.
    M. Duenas, T. Hernandez, I. Estrella, R. Rabanal, Food Chem. 82, 373–379 (2003)CrossRefGoogle Scholar
  59. 59.
    A. Volleková, D. Košt’álová, V. Kettmann, J. Tóth, Phytother. Res. 17, 834–837 (2003)CrossRefGoogle Scholar
  60. 60.
    X.-L. Jiang, L. Wang, E.-J. Wang, G.-L. Zhang, B. Chen, M.-K. Wang, F. Li, Fitoterapia 125, 184–190 (2018)CrossRefGoogle Scholar
  61. 61.
    J. Kunitomo, M. Oshikata, M. Akasu, Yakugaku Zasshi. 101, 951–955 (1981)CrossRefGoogle Scholar
  62. 62.
    B. Kanyinda, R. Vanhaelen-Fastre, M. Vanhaelen, J. Nat. Prod. 56, 618–620 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of AgricultureSelcuk UniversitySelcuklu, KonyaTurkey

Personalised recommendations