Advertisement

Optimization, evaluation and identification of flavonoids in Cirsium setosum (Willd.) MB by using response surface methodology

  • Bo WangEmail author
  • Deya Lv
  • Pan Huang
  • Fan Yan
  • Chang Liu
  • Hui Liu
Original Paper
  • 18 Downloads

Abstract

Medicinal and edible homologous plant is receiving widespread attention due to its particularity. As an edible wild vegetable, Cirsium setosum (Willd.) MB is used to treat various bleeding diseases. This work aims to investigate the technological conditions for ultrasound assisted extraction of flavonoids in C. setosum (Willd.) MB. Using a Box–Behnken design as an experimental model, the optimum extraction process of flavonoids was studied by response surface methodology. The conditions for optimal parameters were: the ratio of liquid–solid 39.21 mL/g, the volume fraction of ethanol 71.55%, the ultrasonic time 37.76 min and the temperature 65.28 °C. This study demonstrated that flavonoids yield was greatly affected by the solid/liquid ratio as well as ultrasonic temperature, while, ethanol volume fraction and ultrasonic time had less influence during extraction. In contrast to Vc and BHT, the C. setosum (Willd.) MB flavonoids extract had a more potent scavenging ability towards DPPH radicals, hydroxyl radicals and superoxide anions. Furthermore, the reduction activity was much stronger than BHT but slightly weaker than Vc. Four flavonoids, the main contributors to the antioxidant activity of C. setosum (Willd.) MB including rutin, nicotiflorin, diosmin and linarin were identified through UPLC–MS.

Keywords

Cirsium setosum (Willd.) MB Flavonoids Ultrasonic wave Scavenging activity UPLC–MS 

Notes

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 31400589).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Q.G. Ma, R.R. Wei, W.M. Liu, Z.P. Sang, S. Zhang, Q.Q. Wang, Z.W. Feng, L.J. Li, Y.P. Li, China J. Chin. Mater. Med. 41, 5 (2016)Google Scholar
  2. 2.
    Q. Sun, L. Chang, Y.P. Ren, L. Cao, Y.G. Sun, Y.F. Du, X.W. Shi, X. Wang, L.T. Zhang, J. Sep. Sci. 35, 21 (2012)Google Scholar
  3. 3.
    Z.M. Feng, Y.N. Yang, J.S. Jiang, P.C. Zhang, Chin. J. Exp. Tradit. Med. Formulae 18, 6 (2012)Google Scholar
  4. 4.
    H. Jiang, Y.H. Meng, L. Yang, Q.H. Wang, B.Y. Yang, C. Liu, H.X. Kuang, Chin. J. Nat. Med. 11, 5 (2013)Google Scholar
  5. 5.
    Q.G. Ma, Y.M. Guo, B.M. Luo, W.M. Liu, R.R. Wei, C.X. Yang, C.H. Ding, X.F. Xu, M.H. He, China J. Chin. Mater. Med. 41, 5 (2016)Google Scholar
  6. 6.
    N. Luan, W.D. Wei, A.L. Wang, X.L. Wu, Y. Qi, J.J. Li, J.Q. Zheng, X.Y. Shang, J. Asian Nat. Prod. Res. 18, 11 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Hodek, P. Trefil, M. Stiborová, Chem.-Biol. Interact. 139, 1 (2002)CrossRefGoogle Scholar
  8. 8.
    H. Zakaryan, E. Arabyan, A. Oo, K. Zandi, Arch. Virol. 162, 9 (2017)CrossRefGoogle Scholar
  9. 9.
    B.C. Han, L.I. Ning, L.I. Xian, J. Shenyang Pharm. Univ. 25, 10 (2008)Google Scholar
  10. 10.
    Q.Q. Liang, L.Q. Ding, Y. Jiao, C.X. Li, J. Hexi Univ. 24, 5 (2008)Google Scholar
  11. 11.
    X.G. Liu, F.Y. Jiang, P.Y. Gao, M. Jin, D. Yang, Z.F. Nian, Z.X. Zhang, J. Mex. Chem. Soc. 59, 1 (2015)Google Scholar
  12. 12.
    H.Y. Xu, Y.H. Bao, Food Sci. Technol. Res. 20, 3 (2014)CrossRefGoogle Scholar
  13. 13.
    L.B.D.S. Nascimento, P.F.D. Aguiar, M.V. Leal-Costa, M.A.S. Coutinho, M.P.G. Borsodi, B. Rossi-Bergmann, E.S. Tavares, S.S. Costa, Phytochem. Anal. 29, 3 (2018)Google Scholar
  14. 14.
    N. Ćujić, K. Šavikin, T. Janković, D. Pljevljakušic, G. Zdunic, Food Chem. 194, 135 (2016)CrossRefGoogle Scholar
  15. 15.
    J.L. Xu, W.C. Wang, H. Liang, Q. Zhang, Q.Y. Li, Ind. Crops Prod. 76, 487 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Raza, F. Li, X. Xu, J. Tang, Int. J. Biol. Macromol. 94, 335 (2017)CrossRefGoogle Scholar
  17. 17.
    F.L. Chen, Q. Zhang, S.M. Fei, H.Y. Gu, L. Yang, Ultrason. Sonochem. 35, 161 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Baş, İ.H. Boyacı, J. Food Eng. 78, 3 (2007)Google Scholar
  19. 19.
    K. Zhong, Q. Wang, Carbohydr. Polym. 80, 1 (2010)CrossRefGoogle Scholar
  20. 20.
    Y. Wu, L. Yi, E.T. Li, Y.Y. Li, Y. Lu, P.J. Wang, H.L. Zhou, J.G. Liu, Y.L. Hu, D.Y. Wang, Int. J. Biol. Macromol. 102, 68 (2017)CrossRefGoogle Scholar
  21. 21.
    H.B. Zhu, Y.Z. Wang, Y.X. Liu, Y.L. Xia, T. Tang, Food Anal. Methods 3, 2 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Wang, J.G. Cao, Y.H. Wu, Q.X. Wang, J.B. Xiao, Molecules 21, 3 (2016)Google Scholar
  23. 23.
    Y. Liu, H. Wang, X. Cai, J. Food Sci. Technol. 52, 4 (2015)Google Scholar
  24. 24.
    A.F. Li, A.L. Sun, R.M. Liu, Y.Q. Zhang, J.C. Cui, J. Chromatogr. 965, 150 (2014)Google Scholar
  25. 25.
    N. Chen, H. Yang, Y. Sun, J. Niu, S.Y. Liu, Peptides 38, 2 (2012)CrossRefGoogle Scholar
  26. 26.
    X. Jiang, Y. Chen, L. Shi, Food Sci. Biotechnol. 22, 6 (2013)Google Scholar
  27. 27.
    P.P. Wu, G.Z. Ma, N.H. Li, Q. Deng, Y.Y. Yin, R.Q. Huang, Food Chem. 173, 194 (2015)CrossRefGoogle Scholar
  28. 28.
    J.R. Liu, Y.C. Yang, L.S. Shi, C.C. Peng, J. Agric. Food Chem. 56, 23 (2008)Google Scholar
  29. 29.
    W.X. Zhou, Z. Tian, J. Beijing Med. Univ. 26, 4 (1994)Google Scholar
  30. 30.
    M.A. Rostagno, M. Palma, C.G. Barroso, J. Chromatogr. A. 1012, 2 (2003)CrossRefGoogle Scholar
  31. 31.
    M. Igual, E. García-Martínez, M.M. Camacho, N. Martínez-Navarrete, Innov. Food Sci. Emerg. Technol. 12, 2 (2011)CrossRefGoogle Scholar
  32. 32.
    F.M. Ursache, I.O. Ghinea, M. Turturică, I. Aprodu, G. Râpeanu, N. Stănciuc, Food Chem. 233, 442 (2017)CrossRefGoogle Scholar
  33. 33.
    Y.Q. Wang, Y.J. Gao, H. Ding, S.J. Liu, X. Han, J.Z. Gui, D. Liu, Food Chem. 218, 152 (2017)CrossRefGoogle Scholar
  34. 34.
    D.C. Bassani, D.S. Nunes, D. Granato, An. Acad. Bras. Cienc. 86, 2 (2014)CrossRefGoogle Scholar
  35. 35.
    F. Dahmoune, B. Nayak, K. Moussi, H. Remini, K. Madani, Food Chem. 166, 585 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Lee, N. Koo, D.B. Min, Compr. Rev. Food Sci. Food Saf. 3, 1 (2004)CrossRefGoogle Scholar
  37. 37.
    N.S.S. Kumar, R.A. Nazeer, R. Jaiganesh, Amino Acids. 42, 5 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Affes, J. Fakhfakh, I. Douad, V. Brieudes, M. Halabalaki, A. El Feki, N. Allouche, Chem. Biodivers. 14, 9 (2017)CrossRefGoogle Scholar
  39. 39.
    J.X. Yang, J. Guo, J.F. Yuan, LWT-Food Sci. Technol. 41, 6 (2008)CrossRefGoogle Scholar
  40. 40.
    Y.F. Zhang, S. Xiao, L.J. Sun, Z.W. Ge, F.K. Fang, W. Zhang, Y. Wang, Y.Y. Cheng, Anal. Chim. Acta 777, 5 (2013)CrossRefGoogle Scholar
  41. 41.
    A. Taamalli, D. Arráez-Román, L. Abaza, I. Iswaldi, A. Fernández-Gutiérrez, M. Zarrouk, C. Segura, Phytochem. Anal. 26, 5 (2015)CrossRefGoogle Scholar
  42. 42.
    M.H. Sun, Z.Q. Luo, Y. Liu, R.R. Yang, L.N. Lu, G.H. Yu, X.Y. Ma, A.X. Liu, Y.F. Guo, H.Y. Zhao, J. Food Sci. 81, 10 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and RemediationAnhui Normal UniversityWuhuChina
  2. 2.College of Environmental Science and EngineeringAnhui Normal UniversityWuhuChina

Personalised recommendations