Physico-chemical characteristics and sensory attributes of coffee beans submitted to two post-harvest processes

  • Maria Brigida dos Santos ScholzEmail author
  • Sandra Helena Prudencio
  • Cintia Sorane Good Kitzberger
  • Rui Sérgio dos Santos Ferreira da Silva
Original Paper


Post-harvest processes (PHP) interfere with the quality of the coffee beverage. Recently, biochemical phenomena and critical points concerning coffee quality in PHP were identified. The objective was to evaluate the chemical composition and sensory attributes of green beans and roasted coffee beans from natural (CN) and semi-dry (CD) PHP. Samples were processed by coffee growers from a Brazilian coffee-producing region. The physico-chemical variables of green and roasted beans and sensory attributes were grouped in order to apply a multiple factorial analysis. This analysis showed that the description of CN and CD coffees depended on the group of variables employed. Certain aroma and flavor precursors, such as sucrose, proteins and 5-CQA, were associated with the year of production, whereas lipids, phenolic compounds, caffeine and chlorogenic acids, were associated with the PHP. Effects attributed to the occurrence of germination during drying were observed in both processes and had reflexes on the sensorial attributes. The results of the samples prepared by the producers are similar to the results obtained in laboratory experiments by other authors. The same attributes were found in the description of both processes, suggesting that they depend on the content of precursors in the green coffee beans. The formation of the precursors was influenced by factors related to peeling and drying of the green coffee. The control of these favor factors enabled the success of each PHP.


Coffea arabica Multiple factorial analyses Natural coffee processing Semi-dry coffee processing Chemical composition 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.


  1. 1.
    G. Bytof, D. Selmar, P. Schieberle, New aspects of coffee processing: how do the different post harvest treatments influence the formation of potential flavour precursors? J. Appl. Bot. 74(3–4), 131–136 (2000)Google Scholar
  2. 2.
    D. Selmar, G. Bytof, S.E. Knopp, The storage of green coffee (Coffea arabica): decrease of viability and changes of potential aroma precursors. Ann. Bot. 101(1), 31–38 (2008)CrossRefGoogle Scholar
  3. 3.
    M.B.S. Scholz, J.V.N. Silva, V.R.G. Figueiredo, C.S.G. Kitzberger, Sensory attributes and physico-chemical characteristics of the coffee beverage from the IAPAR cultivars. Coffee Sci. 8(1), 5–14 (2013)Google Scholar
  4. 4.
    J.N. Barbosa, F.M. Borém, M.A. Cirillo, M.R. Malta, A.A. Alvarenga, H.M.R. Alves, Coffee quality and its interactions with environmental factors in Minas Gerais, Brazil. J. Agric. Sci. 4(5), 181–190 (2012)Google Scholar
  5. 5.
    D. Borsato, M.V.R. Pina, K.R. Spacino, M.B.S. Scholz, A. Androcioli, Filho, Application of artificial neural networks in the geographical identification of coffee samples. Eur. Food Res. Technol. 233(3), 533–543 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Vinecky, F. Davrieux, A.C. Mera, G.S.C. Alves, G. Lavagnini, T. Leroy,.… A.C. Andrade, Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans. J. Agric. Sci. 155(6), 902–918 (2016)CrossRefGoogle Scholar
  7. 7.
    G.S. Duarte, A.A. Pereira, A. Farah, Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chem. 118(3), 851–855 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Farah, M.C. Monteiro, V. Calado, A.S. Franca, L.C. Trugo, Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chem. 98(2), 373–380 (2006)CrossRefGoogle Scholar
  9. 9.
    A.S. Franca, L.S. Oliveira, J.C.F. Mendonça, X.A. Silva, Physical and chemical attributes of defective crude and roasted coffee beans. Food Chem. 90(1–2), 89–94 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Smrke, I. Kroslakova, A.N. Gloess, C. Yeretzian, Differentiation of degrees of ripeness of Catuai and Tipica green coffee by chromatographical and statistical techniques. Food Chem. 174, 637–642 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Bytof, S.E. Knopp, D. Kramer, B. Breitenstein, J.H.W. Bergervoet, S.P.C. Groot, D. Selmar, Transient occurrence of seed germination processes during coffee post-harvest treatment. Ann. Bot. 100(1), 61–66 (2007)CrossRefGoogle Scholar
  12. 12.
    L.P. Figueiredo, F.M. Borém, F.C. Ribeiro, G.S. Taveira, J.H.S. Giomo, M.R. Malta, Fatty acid profiles and parameters of quality of specialty coffees produced in different Brazilian regions. Afr. J. Agric. Res. 10(35), 3484–3493 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Knopp, G. Bytof, D. Selmar, Influence of processing on the content of sugars in green Arabica coffee beans. Eur. Food Res. Technol. 223(2), 195–201 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Tarzia, M.B.S. Scholz, C.L.O. Petkowicz, Influence of the postharvest processing method on polysaccharides and coffee beverages. Int. J. Food Sci. Technol. 45(10), 2167–2175 (2010)CrossRefGoogle Scholar
  15. 15.
    P. Pittia, M. Dalla Rosa, C.R. Lerici, Textural changes of coffee beans as affected by roasting conditions. LWT Food Sci. Tech. 34(3), 168–175 (2001)CrossRefGoogle Scholar
  16. 16.
    C.S.G. Kitzberger, M.B.S. Scholz, J.B.G.D. Silva, M.T. Benassi, L.F.P. Pereira, Free choice profiling sensory analysis to discriminate coffees. AIMS Agric. Food 1(4), 455–469 (2016)CrossRefGoogle Scholar
  17. 17.
    K. Ramalakshmi, I.R. Kubra, L.J.M. Rao, Physicochemical characteristics of green coffee: Comparison of graded and defective beans. J. Food Sci. 72(5), 333–337 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Avelino, B. Barboza, J.C. Araya, C. Fonseca, F. Davrieux, B. Guyot, C. Cilas, Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J. Sci. Food Agric. 85(11), 1869–1876 (2005)CrossRefGoogle Scholar
  19. 19.
    F. Decazy, J. Avelino, B. Guyot, J.J. Perriot, C. Pineda, C. Cilas, Quality of different honduran coffees in realtion to several environments. J. Food Sci. 68(7), 2356–2361 (2003)CrossRefGoogle Scholar
  20. 20.
    O. Gonzalez-Rios, M.L. Suarez-Quiroz, R. Boulanger, M. Barel, B. Guyot, J.P. Guiraud, S. Schorr-Galindo, Impact of ‘‘ecological’’ post-harvest processing on the volatile fraction of coffee beans: II. Roasted coffee. J. Food Compos. Anal. 20(3–4), 297–307 (2007)CrossRefGoogle Scholar
  21. 21.
    V. Leloup, C. Gancel, R. Liardon, A. Rytz, A. Pithon, Impact of wet and dry process on green coffee composition and sensory characteristics. In: International Scientific Colloquium on Coffee (ASIC), 20th, 2004, Bangalore. Proceedings… Paris, 2004. CD ROM (2004)Google Scholar
  22. 22.
    Y. Thazin, T. Pobkrut, T. Kerdcharoen, Prediction of acidity levels of fresh roasted coffees using e-nose and artificial neural network. 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 2018, pp. 210–215.
  23. 23.
    S. Romani, C. Cevoli, A. Fabbri, L. Alessandrini, M. Dalla Rosa, Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off line quality control. J. Food Sci. 77(9), C960–C965 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Rodriguez, C. Duran, A. Reyes, Electronic nose for quality control of Colombian coffee through the detection of defects in cup tests. Sensors 10, 36–46 (2010)CrossRefGoogle Scholar
  25. 25.
    D. Valentin, M. Chollet, H. Lelievre, Abdi, Quick and dirty but still pretty good: a review of new descriptive methods in food science. Int. J. Food Sci. Technol. 47(8), 1563–1578 (2012)CrossRefGoogle Scholar
  26. 26.
    A.R. Di Rosa, F. Leone, F. Cheli, V. Chiofalo, Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment - A review. J. Food Eng. 210(1), 62–75 (2017)CrossRefGoogle Scholar
  27. 27.
    I. Marquetti, J.V. Link, A.L.G. Lemes, M.B.S. Scholz, P. Valderrama, E. Bona, Partial least square with discriminant analysis and near infrared spectroscopy for evaluation of geographic and genotypic origin of Arabica coffee. Comput. Electron. Agric. 121, 313–319 (2016)CrossRefGoogle Scholar
  28. 28.
    E. Bona, I. Marquetti, J.V. Link, G.Y.F. Makimori, V.C. Arca, A.L.G. Lemes, J.M.G. Ferreira, M.B.S. Scholz, P. Valderrama, R.J. Poppi, Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee. LWT Food Sci. Technol. 76(1), 330–336 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Lê, J. Josse, F. Husson, FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25(1), 1–18 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Pagès, Collection and analysis of perceived product inter-distances using multiple factor analysis: Application to the study of 10 white wines from the Loire Valley. Food Qual. Prefer. 16(7), 642–649 (2005)CrossRefGoogle Scholar
  31. 31.
    M.B.S. Scholz, C.S.G. Kitzberger, S.H. Prudencio, R.S.S.F. Silva, The typicity of coffees from different terroirs determined by groups of physico-chemical and sensory variables and multiple factor analysis. Food Res. Int. 114(1), 72–80 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Lê, S. Ledauphin, You like tomato, I like tomato: segmentation of consumers with missing values. Food Qual. Prefer. 17(3–4), 228–233 (2006)CrossRefGoogle Scholar
  33. 33.
    J.M. Gambetta, D. Cozzolino, S.E.P. Bastian, D.W. Jeffery, Exploring the effects of geographical origin on the chemical composition and quality grading of Vitis vinifera L. Cv. chardonnay grapes. Molecules 22(2), 1–17 (2017)CrossRefGoogle Scholar
  34. 34.
    A.O.A.C. Official Methods of analysis of the Association of Official Analytical Chemists. 15 ed. Washington: A.O.A.C. 1298p. (1990)Google Scholar
  35. 35.
    C.S.G. Kitzberger, M.B.S. Scholz, M.T. Benassi, Bioactive compounds content in roasted coffee from traditional and modern Coffea arabica cultivars grown under the same edapho-climatic conditions. Food Res. Int. 61(1), 61–66 (2014)CrossRefGoogle Scholar
  36. 36.
    M.N. Clifford, J. Wight, The measurement of feruloylquinic acids and cafeoilquinic acids in coffee beans Development of the technique and its preliminary application to green coffee beans. J. Sci. Food Agric. 27(1), 73–84 (1976)CrossRefGoogle Scholar
  37. 37.
    J. Kennedy, H. Heymann, Projective mapping and descriptive analysis of milk and dark chocolates. J. Sens. Stud. 24(2), 220–233 (2009)CrossRefGoogle Scholar
  38. 38.
    C. Geromel, L.P. Ferreira, S.M.C. Guerreiro, A.A. Cavalari, D. Pot, L.F.P. Pereira, … P. Marraccini, Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J. Exp. Bot. 57(12), 3243–3258 (2006)CrossRefGoogle Scholar
  39. 39.
    M. Kleinwächter, A. Radwan, M. Hara, D. Selmar, Dehydrin expression in seeds: an issue of maturation drying. Front. Plant Sci. (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    T. Joët, A. Laffargue, F. Descroix, S. Doulbeau, B. Bertrand, A. de Kochko, S. Dussert, Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem. 118(3), 693–701 (2010)CrossRefGoogle Scholar
  41. 41.
    M. Kleinwächter, D. Selmar, Influence of drying on the content of sugars in wet processed green Arabica coffees. Food Chem. 119(2), 500–504 (2010)CrossRefGoogle Scholar
  42. 42.
    D. Kramer, B. Breitenstein, M. Kleinwächter, D. Selmar, Stress metabolism in green coffee beans (Coffea arabica l.): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol. 51(4), 546–553 (2010)CrossRefGoogle Scholar
  43. 43.
    H. Peleg, K. Gacon, P. Schlich, A.C. Noble, Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric. 79(8), 1123–1128 (1999)CrossRefGoogle Scholar
  44. 44.
    J.L. Robichaud, A.C. Noble, Astringency and bitterness of selected phenolics in wine. J. Sci. Food Agric. 53(3), 343–353 (1990)CrossRefGoogle Scholar
  45. 45.
    S. Patui, L. Clincon, C. Peresson, M. Zancani, L. Conte, L. Del Terra, L. Navarini, A. Vianello, E. Braidot, Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination. Plant Sci. 219–220, 19–25 (2014)CrossRefGoogle Scholar
  46. 46.
    M.M. Shimizu, P. Mazzafera, Compositional changes of proteins and amino acids in germinating coffee seeds. Braz. Arch. Biol. Technol. 43(3), 259–265 (2000)CrossRefGoogle Scholar
  47. 47.
    N.P. Arruda, A.M.C. Hovell, C.M. Rezende, S.P. Freitas, S. Couri, H.R. Bizzo, Correlação entre precursores e voláteis em café arábica brasileiro processado pelas vias seca, semiúmida e úmida e discriminação através da análise por componentes principais. Química Nova 35(10), 2044–2051 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maria Brigida dos Santos Scholz
    • 1
    Email author
  • Sandra Helena Prudencio
    • 2
  • Cintia Sorane Good Kitzberger
    • 1
  • Rui Sérgio dos Santos Ferreira da Silva
    • 2
  1. 1.Área de Ecofisiologia-Laboratório de Fisiologia VegetalIAPAR-Instituto Agronômico do ParanáLondrinaBrazil
  2. 2.Departamento de Ciência e Tecnologia de AlimentosUEL -Universidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations