Advertisement

Millets: a cereal grain with potent antioxidants and health benefits

  • Pinderpal Kaur
  • Sukhvinder Singh PurewalEmail author
  • Kawaljit Singh Sandhu
  • Maninder Kaur
  • Raj Kumar Salar
Review Paper

Abstract

Millet grains are small seeded Kharif crop used as food and feed. Due to presence of bioactive compounds and important minerals, millets have their own importance among cereal grains. Finger millet is a mixture of gallic acid; p-hydroxybenzoic acid; gentisic acid; caffeic acid; syringic acid; p-coumaric acid; sinapic acid; salicylic acid; trans-cinnamic acid. Foxtail millet contains gallic acid; p-hydroxybenzoic acid; vanillic; caffeic acid; chlorogenic acid; ferulic acid; sinapic acid and p-coumaric acid. Pearl millet possesses gallic acid; syringic acid; p-coumaric acid, ascorbic acid and ferulic acid. Little millet is rich in gallic acid; p-hydroxybenzoic acid; vanillic; caffeic acid; chlorogenic acid; ferulic acid; sinapic acid and p-coumaric acid. Thermal processing leads to oxidative degradation and depolymerization of bioactive constituents present in millets. Bioactive compounds like ascorbic acid and carotenoids are heat sensitive and could lose their activity upon processing especially thermal processing. Higher temperature resulted in decrease in p-coumaric acid (14.3–3.8 mg 100 g−1), ellagic acid (8.5–4.9 mg 100 g−1), caffeic acid (6.3–2.3 mg 100 g), gallic acid (224–170 mg 100 g−1), hydroxybenzoic acid (2.3–0.6 mg 100 g−1), catechin (87.2–45.6 mg 100 g−1), ferulic acid (45.4–17.5 mg 100 g−1) and epicatechin (23.9–4.8 mg 100 g−1). Millet extracts contain specific compounds with bioactive properties, including antioxidant activity, the ability to protect DNA, anti-diabetic, anti-inflammatory and other health-promoting properties. Processing imparts specific flavor, improve texture, taste and shelf life of millets based food products. Millet grains are of great interest because of their agro-industrial importance, high nutritional value and bioactive constituents.

Keywords

Millet Processed food Bioactive phytochemicals Antioxidants 

References

  1. 1.
    M. Onis, M. Blossner, Int. J. Epidemiol. 32, 518 (2003)Google Scholar
  2. 2.
    P. Parthasarathy Rao, G. Basavaraj (2015) Status and prospects of millet utilization in India and global scenario. In: Millets: Promotion for Food, Feed, Fodder, Nutritional and Environment Security, Proceedings of Global Consultation on Millets Promotion for Health & Nutritional Security. Society for Millets Research, ICAR Indian Institute of Millets Research, Hyderabad, pp. 197–209. ISBN 8189335529Google Scholar
  3. 3.
    B. Tripathi, R. Ravi, M. Prakash, K. Platel, Int. J. Food. Sci. Nutr. 62, 651 (2011)Google Scholar
  4. 4.
    J.F. Reynolds, D.M.S. Smith, E.F. Lambin, B.L. Turner, M. Mortimore, S.P.J. Batterburry, Science 316, 847 (2007)Google Scholar
  5. 5.
    J. Huang, Y.H. Haipeng, G.X. Xiaodan, G. Wang, R. Guo, Nat. Clim. Change 6, 166 (2016)Google Scholar
  6. 6.
    L. Gong, W. Cao, H. Chi, J. Wang, H. Zhang, J. Liu, B. Sun, Food Res. Int. 103, 84 (2018)Google Scholar
  7. 7.
    A.M. Dias-Martins, K.L. Pessanha, S. Pacheco, J.A.S. Rodrigues, C.W.P. Carvalho, Food Res. Int. 109, 175 (2018)Google Scholar
  8. 8.
    R.K. Salar, S.S. Purewal, K.S. Sandhu, Food Res. Int. 100, 204 (2017)Google Scholar
  9. 9.
    A.K. Siroha, K.S. Sandhu, M. Kaur, Food Meas. 10, 311 (2016)Google Scholar
  10. 10.
    FAO (Food and Agricultural Organization of United Nations) (2016) http://www.fao.org/faostat/en/#data/QC. Accessed 23 Sept 2018
  11. 11.
    A. Kumar, V. Tomer, A. Kaur, V. Kumar, K. Gupta, Agric. Food Secur. 7, 31 (2018)Google Scholar
  12. 12.
    A.S.M. Saleh, Q. Zhang, J. Chen, Q. Shen, Compr. Rev. Food Sci. Food Saf. 12, 281 (2013)Google Scholar
  13. 13.
    T. Winch, in Growing Food: A Guide to Food Production, 1st edn. (Springer, Dordrecht, 2006), p. p333Google Scholar
  14. 14.
    Kajuna. STAR MILLET: post-harvest operations. Food and Agricultural Organization, United Nations (2001). http://www.fao.org/3/a-av009e.pdf. Accessed 16 Sept 2018
  15. 15.
    P. Li, T.P. Brutnell, J. Exp. Bot. 62, 3031 (2011)Google Scholar
  16. 16.
    J.H. Hulse, E.M. Laing, O.E. Pearson, in Sorghum and the Millets. Their Composition and Nutritional Value (Academic Press, New York, 1980)Google Scholar
  17. 17.
    J.M. Awika, in Advances in Cereal Science: Implications to Food Processing and Health Promotion, ed. by J.M. Awika, V. Piironen, S. Bean (ACS Symposium Series, American Chemical Society, Washington, DC, 2011), pp. 1–13Google Scholar
  18. 18.
    K. Hariprassana, Foxtail millet, Setaria italica (L.) P. Beauv, in Millets and Sorghum: Biology and Genetic Improvement, ed. by P.V. Jagananth (Wiley, New York, 2017), pp. 112–148Google Scholar
  19. 19.
    P. Vivitha, D. Vijayalakshmi, Agric. Rev. 36, 296 (2015)Google Scholar
  20. 20.
    T. Bandyopadhyay, M. Muthamilarasan, M. Prasad, Front. Plant Sci. 8, 1266 (2017)Google Scholar
  21. 21.
    J. Wang, S.K. Vanga, R. Saxena, V. Orsat, V. Raghavan, Climate 6, 41 (2018)Google Scholar
  22. 22.
    Leder, Sorghum and Millets. Cultivated plants, primarily as food sources, in Encyclopedia of Life Support Systems, ed. by F. Gyargy (UNESCO, Eolss Publishers, Oxford, 2004)Google Scholar
  23. 23.
    F.O. Sade, J. Food Technol. 7, 92 (2009)Google Scholar
  24. 24.
    P.F. Suma, A. Urooj, Inter. J. Food Prop. 18, 2675 (2015)Google Scholar
  25. 25.
    K.S. Sandhu, A.K. Siroha, LWT Food Sci. Technol. 83, 213 (2017)Google Scholar
  26. 26.
    S. Mbithi-Mwikya, W. Ooghe, J. Van-Camp, D. Nagundi, A. Huyghebaert, J. Agric. Food Chem. 48, 3081 (2000)Google Scholar
  27. 27.
    D. Chandra, S. Chandra, A.K. Pallavi, Shamra, Food Sci. Hum. Wellness 5, 149 (2016)Google Scholar
  28. 28.
    G. Ravindran, Food Chem. 39, 99 (1991)Google Scholar
  29. 29.
    K.V. Pasha, C.V. Ratnavathi, J. Ajani, D. Raju, S.M. Kumar, S.R. Beedu, J. Sci. Food Agric. 98, 652 (2018)Google Scholar
  30. 30.
    H.N. Englyst, S.M. Kingman, J.H. Cummings, Eur. J. Clin. Nutr. 46, 33 (1992)Google Scholar
  31. 31.
    M. Nirmala, M.V.S.S.T. Subbarao, G. Muralikrishna, Food Chem. 69, 175 (2000)Google Scholar
  32. 32.
    P. Singh, S.R. Raghuvanshi, Afr. J. Food Sci. 6, 77 (2012)Google Scholar
  33. 33.
    C. Manisseri, M. Gudipati, Indian J. Med. Microbiol. 52, 251 (2012)Google Scholar
  34. 34.
    S.K. Mathanghi, K. Sudha, Int. J. Pharm. Chem. Biol. Sci. 2, 431 (2012)Google Scholar
  35. 35.
    F. Shahidi, M. Naczk, in Food Phenolics. Technomic Publishing Company Inc., Lancaster, PA, pp. 281–319 (1995)Google Scholar
  36. 36.
    S. Skrovankova, D. Sumczynski, J. Mlcek, T. Jurikova, J. Sochor, Int. J. Mol. Sci. 16, 24673 (2015)Google Scholar
  37. 37.
    G.A. Pereira, H.S. Arruda, D.R. de-Morais, M.N. Eberlin, G.M. Pastore, Food Res. Int. 108, 264 (2018)Google Scholar
  38. 38.
    G. Pang, J. Xie, Q. Chen, Z. Hu, Food Sci. Hum. Wellness 1, 26 (2012)Google Scholar
  39. 39.
    M.J. Rein, M. Renouf, C. Cruz-Hernandez, L. Actis-Goretta, S.K. Thakkar, M.S. Pinto, Br. J. Clin. Pharmacol. 75, 588 (2013)Google Scholar
  40. 40.
    Z.F. Bhat, S. Kumar, H.F. Bhat, J. Food Sci. Technol. 52, 5377 (2015)Google Scholar
  41. 41.
    R.K. Salar, S.S. Purewal, K.S. Sandhu, Biocatal. Agric. Biotechnol. 11, 201 (2017)Google Scholar
  42. 42.
    P. Kaur, S.B. Dhull, K.S. Sandhu, R.K. Salar, S.S. Purewal, Food Meas. 12, 1530 (2018)Google Scholar
  43. 43.
    R.K. Salar, S.S. Purewal, Food Meas. 11, 126 (2017)Google Scholar
  44. 44.
    G. Hinze, Colorado State Univ. Exp. Stn. Fort Collins, CO. p12 (1972)Google Scholar
  45. 45.
    R.K. Salar, S.S. Purewal, M.S. Bhatti, Resour. Eff. Technol. 2, 148 (2016)Google Scholar
  46. 46.
    R.K. Salar, S.S. Purewal, Biocatal. Agric. Biotechnol. 8, 221 (2016)Google Scholar
  47. 47.
    C. Martinez-Valverde, M.J. Periago, G. Ros, Nutritional Significance of Dietary Phenolic compounds. Arch. Latinoam. Nutr. 50, 5–18 (2000) (In Spanish)Google Scholar
  48. 48.
    H. Zielinski, H. Kozlowska, J. Agric. Food Chem. 48, 2008 (2000)Google Scholar
  49. 49.
    R.K. Salar, P. Sharma, S.S. Purewal, Tang 5, 1 (2015)Google Scholar
  50. 50.
    S.B. Dhull, P. Kaur, S.S. Purewal, Resour. Effic. Technol. 2, 168 (2016)Google Scholar
  51. 51.
    J. Jakopic, F. Stampar, R. Veberic, Sci. Hort. 123, 234 (2009)Google Scholar
  52. 52.
    C. Liyana-Pathirana, F. Shahidi, Food Chem. 93, 47 (2005)Google Scholar
  53. 53.
    C.Y. Cheok, N.L. Chin, Y.A. Yusof, R.A. Talib, C.L. Law, Ind. Crops Prod. 40, 247 (2012)Google Scholar
  54. 54.
    G. Hithamani, K. Srinivasan, Food Chem. 164, 55 (2014)Google Scholar
  55. 55.
    A. Chandrasekara, M. Naczk, F. Shahidi, Food Chem. 133, 1 (2012)Google Scholar
  56. 56.
    S.R. Pradeep, M. Guha, Food Chem. 126, 1643 (2011)Google Scholar
  57. 57.
    A. Chandrasekara, F. Shahidi, J. Funct. Foods 3, 144 (2011)Google Scholar
  58. 58.
    S. Sharma, D.C. Saxena, C.S. Riar, J. Cereal Sci. 72, 153 (2016)Google Scholar
  59. 59.
    A. Nani, M. Belarbi, W. Ksouri-Megdiche, S. Abdoul-Azize, C. Benammar, F. Ghiringhelli, A. Hichami, N.A. Khan, BMC Complement Altern. Med. 15, 426 (2015)Google Scholar
  60. 60.
    S. Sharma, N. Sharma, S. Handa, S. Pathania, Food Chem. 214, 162 (2017)Google Scholar
  61. 61.
    P.S. Hegde, N.S. Rajasekaran, T.S. Chandra, Nutr. Res. 25, 1109 (2005)Google Scholar
  62. 62.
    R.K. Salar, M. Certik, V. Brezova, Biotechnol. Bioprocess. Eng. 17, 109 (2012)Google Scholar
  63. 63.
    L.P. Kumari, S. Sumathi, Plant Foods Hum. Nutr. 57, 205 (2002)Google Scholar
  64. 64.
    S.H. Lee, I.M. Chung, Y.S. Cha, Y. Park, Nutr. Res. 30, 290 (2010)Google Scholar
  65. 65.
    S. Chethan, N.G. Malleshi, Food Chem. 105, 862 (2007)Google Scholar
  66. 66.
    B. Dayakar Rao, K. Bhaskarachary, G.D. Arlene Christina, G. Sudha Devi, A. Vilas, A. Tonapi, in Nutritional and Health Benefits of Millets. (ICAR_Indian Institute of Millets Research (IIMR) Rajendranagar, Hyderabad, 2017), pp 112Google Scholar
  67. 67.
    C. Carolina, M. Luigi, C. Nicola, B. Cristina, D.G. Luigi, R.M. Domenica, P. Paola, F. Natale, R.B. Scott, L. Brian, L. Marco, Clin. Nutr. 26, 799 (2007)Google Scholar
  68. 68.
    J.W. Anderson, Proc. Nutr. Soc. 62, 135 (2003)Google Scholar
  69. 69.
    J. Slavin Proc. Nutr. Soc. 62, 129 (2003)Google Scholar
  70. 70.
    N.M. McKeown, J.B. Meigs, S. Liu, E. Saltzman, P.W. Wilson, P.F. Jacques, Diab. Care 27, 538 (2004)Google Scholar
  71. 71.
    A.K. Siroha, K.S. Sandhu, Food Meas. 11, 872 (2017)Google Scholar
  72. 72.
    J.A. Adebiyi, A.O. Obadina, O.A. Adebo, E. Kayitesi, Food Chem. 232, 210 (2017)Google Scholar
  73. 73.
    W.C. Vong, X.Y. Hua, S.Q. Liu, LWT Food Sci. Technol. 90, 316 (2018)Google Scholar
  74. 74.
    R.K. Salar, S.S. Purewal, K.S. Sandhu, 3 Biotech, 7, 164 (2017)  https://doi.org/10.1007/s13205-017-0834-2 Google Scholar
  75. 75.
    P.D. Postemsky, N.R. Curvetto, Int. Biodeterior. Biodegrad. 100, 52 (2015)Google Scholar
  76. 76.
    Q. Bei, Y. Liu, G. Chen, Z. Wu, J. Funct. Foods 32, 185 (2017)Google Scholar
  77. 77.
    S. Huang, Y. Ma, C. Zhang, S. Cai, M. Pang, J. Funct. Foods 37, 354 (2017)Google Scholar
  78. 78.
    Q. Bei, G. Chen, F. Lu, S. Wu, Z. Wu, Food Chem. 245, 297 (2018)Google Scholar
  79. 79.
    H. Zielinski, D. Szawara-Nowak, N. Baczek, M. Wronkowska, Food Chem. 271, 291 (2019)Google Scholar
  80. 80.
    A. Obadina, I.O. Ishola, I.O. Adekoya, A.G. Soares, P. de-Carvalho, C. Wanderlei, H.T. Barboza, J. Cereal Sci. 70, 247 (2016)Google Scholar
  81. 81.
    P.M. Pradeep, Y.N. Sreerama, J. Funct. Foods 35, 682 (2017)Google Scholar
  82. 82.
    K. Marmouzi, H. Ali, S. Harhar, K. Gharby, N. Sayah, Y. Madani, M.E. Cherrah, Faouzi, J. Saudi Soc. Agric. Sci. 17, 229 (2018)Google Scholar
  83. 83.
    P.M. Pradeep, Y.N. Sreerama, Food Chem. 169, 455 (2015)Google Scholar
  84. 84.
    R. Devisetti, S.N. Yadahally, S. Bhattacharya, LWT Food Sci. Technol. 59, 889 (2014)Google Scholar
  85. 85.
    L.A.M. Pelembe, J. Dewar, J.R.N. Taylor, J. Inst. Brew. 108, 7 (2002)Google Scholar
  86. 86.
    G. Laxmi, N. Chaturvedi, S. Richa, J. Nutr. Food Sci. 5, 407 (2015)Google Scholar
  87. 87.
    J. Boateng, M. Verghese, L.T. Walker, S. Ogutu, LWT-Food Sci. Technol. 41, 1541 (2008)Google Scholar
  88. 88.
    P. Wanyo, N. Meeso, S. Siriamornpun, Food Chem. 157, 457 (2014)Google Scholar
  89. 89.
    H.S. Arruda, G.A. Pereira, D.R. de-Morais, M.N. Eberlin, G.M. Pastore, Food Chem. 245, 738 (2018)Google Scholar
  90. 90.
    M.R.B. Lemos, E.M.A. Siqueira, S.F. Arruda, R.C. Zambiazi, Food Res. Int. 48, 592 (2012)Google Scholar
  91. 91.
    P. Sharma, H.S. Gujral, Food Res. Int. 44, 235 (2011)Google Scholar
  92. 92.
    G. Sripriya, K. Chandrasekharan, V.S. Murty, T.S. Chandra, Food Chem. 57, 537 (1996)Google Scholar
  93. 93.
    E.E. Towo, U. Svanberg, G.D. Ndossi, J. Sci. Food Agric. 83, 980 (2003)Google Scholar
  94. 94.
    L.R. Howard, R.L. Prior, R. Liyanage, J.O. Lay, J. Agric. Food Chem. 60, 6678 (2012)Google Scholar
  95. 95.
    A. Marquez, M.P. Serratosa, J. Merida, Food Chem. 146, 507 (2014)Google Scholar
  96. 96.
    M. Monagas, B. Bartolome, C. Gomez-Cordoves, Eur. Food Res. Technol. 220, 331 (2005)Google Scholar
  97. 97.
    J. Reed, C. Krueger, M. Vestling, Phytochem. 66, 2248 (2005)Google Scholar
  98. 98.
    K. Wilkes, L.R. Howard, C. Brownmiller, R.L. Prior, J. Agric. Food Chem. 62, 4018 (2014)Google Scholar
  99. 99.
    E. Sadilova, F.C. Stintzing, R. Carle, J. Food Sci. 71, C504 (2006)Google Scholar
  100. 100.
    E. Sadilova, R. Carle, F.C. Stintzing, Mol. Nutr. Food Res. 51, 1461 (2007)Google Scholar
  101. 101.
    V. Atanasova, H. Fulcrand, V. Cheynier, M. Moutounet, Anal. Chim. Acta 458, 15 (2002)Google Scholar
  102. 102.
    J.C. Hufnagel, T. Hofmann, J. Agric. Food Chem. 56, 9190 (2008)Google Scholar
  103. 103.
    O. Laaksonen, L. Makila, R. Tahvonen, H. Kallio, B. Yang, Food Chem. 138, 2421 (2013)Google Scholar
  104. 104.
    L. Makila, O. Laaksonen, H. Kallio, B. Yang, Food Chem. 221, 422 (2017)Google Scholar
  105. 105.
    O. Laaksonen, L. Makila, M. Sandell, J. Salminen, P. Liu, H. Kallio, B. Yang, Food Bioprocess Technol. 7, 2877 (2014)Google Scholar
  106. 106.
    R.K. Kang, R. Jain, M.D. Mridula, Am. J. Food Technol. 3, 50 (2008)Google Scholar
  107. 107.
    D.B. Kulkarni, B.K. Sakhale, N.A. Giri, Int. J. Nutr. Sci. 3, 1018 (2018)Google Scholar
  108. 108.
    J.M. Begum, Refined processing and Products for commercial use and health benefits from finger millet, in Food Uses of Small Millets and Avenues for Further Processing and Value Addition, Project Coordination Cell, All India Coordinated Small Millets Improvement Project, ed. by K.T. Krishne Gowda, A. Seetharam (ICAR, UAS, GKVK, Bangalore, 2007)Google Scholar
  109. 109.
    V. Varma, S. Patel, Emir. J. Food Agric. 25, 169 (2012)Google Scholar
  110. 110.
    P. Bora, S. Ragaee, M. Marcone, Food Chem. 274, 718 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Science & TechnologyChaudhary Devi Lal UniversitySirsaIndia
  2. 2.Department of BiotechnologyChaudhary Devi Lal UniversitySirsaIndia
  3. 3.Department of Food Science & TechnologyMaharaja Ranjit Singh Punjab Technical UniversityBathindaIndia
  4. 4.Department of Food Science & TechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations