Online system for the identification and classification of olive fruits for the olive oil production process

  • Daniel Aguilera Puerto
  • Óscar Cáceres Moreno
  • Diego Manuel Martínez GilaEmail author
  • Juan Gómez Ortega
  • Javier Gámez García
Original Paper


The quality of the olive oil is directly related to fruits status and the extraction process conditions. A correct classification of olive lots, depending on their quality, is critical to obtain the best possible oil. Currently, the separation in different categories is done manually before the oil extraction process. This article presents an on-line computer vision system which automatically classifies olive lots according to their quality level in different categories. The classification is based on the differentiation between olives that have been picked up from the ground or from the tree. Two full setups have been installed and tested in real production conditions in the reception of the mill: before and after the olive washing process. The suggested approach uses a feature vector that concatenates the olive image histograms from different colour spaces and the texture values of three algorithms (image entropy, grey level co-occurrence matrix and statistics like Contrast, Correlation, Energy and Homogeneity). As classifiers, an Artificial Neural Network (ANN) and a Support Vector Machine (SVM) were used. For the experimental validation, 6325 images from 100 batches were analysed showing good classification results (success ratios of 98.4% before the washing stage working with an SVM and 98.8% after cleaning using ANN algorithm).


On-line olives classification Computer vision Olive oil extraction process Olive cleaning process ANN SVM 



This work was partially supported by the project DPI2016-78290-R.


  1. 1.
    P.C. Marchal, D.M. Gila, J.G. García, J.G. Ortega, Optimal production planning for the virgin olive oil elaboration process. IFAC Proc. Vol. 47(3), 8921–8926 (2014)CrossRefGoogle Scholar
  2. 2.
    P. Cano Marchal, J. Gómez Ortega, D. Aguilera Puerto, J. Gámez García, Situación actual y perspectivas futuras del control del proceso de elaboración del aceite de oliva virgen. Rev. Iberoam. Automática e Informática Ind. RIAI 8(3), 258–269 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Di Giovacchino, S. Sestili, D.Di Vincenzo, Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Technol. 104(9–10), 587–601 (2002)CrossRefGoogle Scholar
  4. 4.
    A.H. Amer Eissa, A.A. Abdel Khalik, Understanding color image processing by machine vision for biological materials, in Structure and Function of Food Engineering (InTech, 2012), pp. 227–274Google Scholar
  5. 5.
    T. Brosnan, D.-W. Sun, Improving quality inspection of food products by computer vision––a review. J. Food Eng. 61(1), 3–16 (2004)CrossRefGoogle Scholar
  6. 6.
    T. Brosnan, D.-W. Sun, Inspection and grading of agricultural and food products by computer vision systems—a review. Comput. Electron. Agric. 36(2–3), 193–213 (2002)CrossRefGoogle Scholar
  7. 7.
    C.-J. Du, D.-W. Sun, Learning techniques used in computer vision for food quality evaluation: a review. J. Food Eng. 72(1), 39–55 (2006)CrossRefGoogle Scholar
  8. 8.
    C.-J. Du, D.-W. Sun, Pizza sauce spread classification using colour vision and support vector machines. J. Food Eng. 66(2), 137–145, (2005)CrossRefGoogle Scholar
  9. 9.
    D. Unay, B. Gosselin, Artificial neural network-based segmentation and apple grading by machine vision, in IEEE International Conference on Image Processing 2005, 2005, pp. II–630Google Scholar
  10. 10.
    F. Avila, M. Mora, M. Oyarce, A. Zuñiga, C. Fredes, A method to construct fruit maturity color scales based on support machines for regression: application to olives and grape seeds. J. Food Eng. 162, 9–17, (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, S. Wang, G. Ji, P. Phillips, Fruit classification using computer vision and feedforward neural network. J. Food Eng. 143, 167–177, (2014)CrossRefGoogle Scholar
  12. 12.
    E. Funes, Y. Allouche, G. Beltrán, A. Jiménez, A review: artificial neural networks as tool for control food industry process. J. Sens. Technol. 05(01), 28–43 (2015)CrossRefGoogle Scholar
  13. 13.
    A.R. Di Rosa, F. Leone, C. Scattareggia, V. Chiofalo, Botanical origin identification of Sicilian honeys based on artificial senses and multi-sensor data fusion. Eur. Food Res. Technol. 244(1), 117–125 (2018)CrossRefGoogle Scholar
  14. 14.
    A.R. Di Rosa, F. Leone, F. Cheli, V. Chiofalo, Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment—a review. J. Food Eng. 210, 62–75 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Tretola, M. Ottoboni, A.R. Di Rosa, C. Giromini, E. Fusi, R. Rebucci, F. Leone, V. Dell’Orto, V. Chiofalo, L. Pinotti, Former food products safety evaluation: computer vision as an innovative approach for the packaging remnants detection. J. Food Qual. (2017)Google Scholar
  16. 16.
    M. Tretola, A.R. Di Rosa, E. Tirloni, M. Ottoboni, C. Giromini, F. Leone, C.E.M. Bernardi, V. Dell’Orto, V. Chiofalo, L. Pinotti, Former food products safety: microbiological quality and computer vision evaluation of packaging remnants contamination. Food Addit. Contam. Part A. 34(8), 1427 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Diaz, L. Gil, C. Serrano, M. Blasco, E. Moltó, J. Blasco, Comparison of three algorithms in the classification of table olives by means of computer vision. J. Food Eng. 61(1), 101–107 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Furferi, M. Carfagni, A machine vision system for real-time and automatic assessment of olives colour and surface defects. Int. J. Comput. Res. (2010)Google Scholar
  19. 19.
    E. Guzmán, V. Baeten, J.A. Fernández, J.a. García-Mesa, Infrared machine vision system for the automatic detection of olive fruit quality. Talanta 116, 894–898 (2013)CrossRefGoogle Scholar
  20. 20.
    D. Puerto, D. Gila, J. García, J. Ortega, Sorting olive batches for the milling process using image processing. Sensors 15(7), 15738–15754 (2015)Google Scholar
  21. 21.
    E. Guzmán, V. Baeten, J.A.F. Pierna, J.A. García-Mesa, Determination of the olive maturity index of intact fruits using image analysis. J. Food Sci. Technol. 52(3), 1462–1470 (2015)Google Scholar
  22. 22.
    T. Ram, Z. Wiesman, I. Parmet, Y. Edan, Olive oil content prediction models based on image processing. Biosyst. Eng. 105(2), 221–232 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Carfagni, M. Daou, R. Furferi, S. Marta, Real-time estimation of olive oil quality parameters: a combined approach based on ANNs and machine vision, in Int. Conf. Comput., 2008, pp. 387–392Google Scholar
  24. 24.
    M. Furferi, Carfagni, M. Daou, Real-time estimation of peroxides and acidity level of extra-virgin olive oil: an integrated approach. Int. J. Math. Comput. Simul. 2, 206–214 (2008)Google Scholar
  25. 25.
    P.C. Marchal, D.M.M. Gila, J.G. Garcia, J.G. Ortega, Expert system based on computer vision to estimate the content of impurities in olive oil samples. J. Food Eng. 119(2), 220–228 (2013)CrossRefGoogle Scholar
  26. 26.
    M.T. Riquelme, P. Barreiro, M. Ruiz-Altisent, C. Valero, Olive classification according to external damage using image analysis. J. Food Eng. 87(3), 371–379 (2008)CrossRefGoogle Scholar
  27. 27.
    R.M. Haralick, K. Shanmugam, I. Dinstein, Textural features for image classification. IEEE Trans. Syst. Man. Cybern. SMC-3(6), 610–621 (1973)CrossRefGoogle Scholar
  28. 28.
    C. Zheng, D.-W. Sun, L. Zheng, Recent applications of image texture for evaluation of food qualities—a review. Trends Food Sci. Technol. 17(3), 113–128 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Materka, M. Strzelecki, Texture analysis methods—a review (Institute of Electronics, Technical University of Lodz, Brussels, 1998)Google Scholar
  30. 30.
    I. Jolliffe, Principal component analysis (2005)Google Scholar
  31. 31.
    C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  32. 32.
    S. Domenico, W. Gary, Machine vision and neural nets in food processing and packaging—natural way combinations, in Food processing automation, 1994, p. 11Google Scholar
  33. 33.
    C.-W. Hsu, C.-C. Chang, C.-J. Lin, A Practical Guide to Support Vector Classification (National Taiwan University, Taiwan, 2016)Google Scholar
  34. 34.
    R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification (Wiley, New York, 2012Google Scholar
  35. 35.
    M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network Design (Springer, Boston, MA, 1996)Google Scholar
  36. 36.
    H. Demuth, M. Beale, M. Hagan, Neural Network Toolbox User’s Guide (The MathWorks. Inc, Natrick, USA, 2009)Google Scholar
  37. 37.
    E. Guzmán, V. Baeten, J.A.F. Pierna, J.a. García-Mesa, Infrared machine vision system for the automatic detection of olive fruit quality. Talanta 116, 894–898 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fundación Andaltec I+D+i, Ampl. Pol. Cañada de la FuenteMartosSpain
  2. 2.Group of Robotics, Automation and Computer VisionUniversity of JaénJaénSpain

Personalised recommendations