Nutraceutical values of hot water infusions of moringa leaf (Moringa oleifera) and licorice root (Glycyrrhiza glabra) and their effects on liver biomarkers in Wistar rats

  • Sule O. SalawuEmail author
  • Emmanuel O. Ibukun
  • Israel A. Esan
Original Paper


Globally, there is an increasing need to consume health promoting foods and beverages as alternatives to synthetic drugs. Moringa leaf (Moringa oleifera) and Licorice root (Glycyrrhiza glabra) have been widely harnessed for their innumerable bio-functions. Therefore, the present study sought to evaluate the mineral contents and antioxidant activities of hot water infusion made of Moringa leaf (M), Licorice root (LR) and their composite blends (M + LR), and to assess their effects on liver biomarkers in Wistar rats. The results of the mineral contents (Mg, Na, K, P, Zn, Fe, Mn) of M, LR and their composite blends (M + LR), showed high amounts of the evaluated minerals in M and M + LR, with the exception of Fe that was higher in the Licorice root. The calculated [phytate]/[Ca], [oxalate]/[Ca], [phytate]/[Zn] and [Ca][phytate]/[Zn] molar ratios of the tea infusions fell below the critical values, thereby revealing that Ca and Zn and by extension other minerals would be bio-available. The tea infusions have a measure of antioxidant action with M + LR ranking higher. The effects of the tea infusions on liver biomarkers and the histological examination of the liver tissue showed that the tested concentrations of M, L and M + LR had no damaging effects on the liver with the exception of L and M + LR at 50 mg/mL/kg, where degeneration of hepatocytes was observed. Overall, the results showed that the composite blends (M + LR), at a regulated dose, could be explored as functional food in the provision of nutritionally important minerals, and the management of stress-related diseases.


Antioxidant activities Mineral bioavailability Hepatoprotection Herbal tea infusions 


  1. 1.
    E.A. J.Olivier, C.Z. Symington, I.T. Jonker, T.S. Rampedi, Van Eeden, Comparison of the mineral composition of leaves and infusions of traditional and herbal teas. S. Afr. J. Sci. 108(1/2), 1–7 (2012)Google Scholar
  2. 2.
    C.S. Yang, X. Wang, G. Lu, S.C. Picinich, Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 9(6), 429–439 (2009)Google Scholar
  3. 3.
    M.E. Harbowy, D.A. Balentine, A.P. Davies, Y. Cai, Tea Chem. Crit. Rev. Plant Sci. 16(5), 415–480 (1997)Google Scholar
  4. 4.
    C.D. Berdanier, J.T. Dwyer, D. Heber, Handbook of Nutrition and Food, vol. 3 (CRC Press, Boca Raton, 2016), pp. 211–226Google Scholar
  5. 5.
    S.M. Chacko, P.T. Thambi, R. Kuttan, I. Nishigaki, Beneficial effects of green tea: a literature review. Chin. Med. 5, 13 (2010)Google Scholar
  6. 6.
    M.P. Almajano, R. Carbo, J.A.L. Jimenez, M.H. Gordon, Antioxidant and antimicrobial activities of tea infusions. Food Chem. 108(1), 55–63 (2008)Google Scholar
  7. 7.
    A. Crozier, I.B. Jaganath, M.N. Clifford, Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. 26, 1001–1043 (2009)Google Scholar
  8. 8.
    T. Ozcan, A. Akpinar-Bayizit, L. Yilmaz-Ersan, B. Delikanli, Phenolic human health. IJCEA 5(5), 393–396 (2014)Google Scholar
  9. 9.
    J.M. Lorenzo, P.E.S. Munekata, Phenolic compounds of green tea: health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 6(8), 709–719 (2016)Google Scholar
  10. 10.
    J. Ravindran, G.V. Subbaraju, M.V. Ramani, B. Sung, B.B. Aggarwal, Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem. Pharmacol. 79, 1658–1666 (2010)Google Scholar
  11. 11.
    R.T. Emeny, D. Gao, D.A. Lawrence, Beta1-adrenergic receptors on immune cells impair innate defenses against Listeria. J. Immunol. 178, 4876–4884 (2007)Google Scholar
  12. 12.
    P.K. Rai, D. Jaiswal, S. Mehta, D.K. Rai, B. Sharma, G. Watal, Effect of Curcuma longa freeze dried rhizome powder with milk in STZ induced diabetic rats. Indian J. Clin. Biochem. 25, 175–181 (2010)Google Scholar
  13. 13.
    M. Damle, Glycyrrhiza glabra (Liquorice)—a potent medicinal herb. Int. J. Herb. Med. 2(2), 132–136 (2014)Google Scholar
  14. 14.
    J.D. Amar, Moringa oleifera (Lamm.): a plant with immense importance. JBPN 2(5), 307–331 (2012)Google Scholar
  15. 15.
    A. Leone, A. Spada, A. Battezzati, A. Schiraldi, J. Aristil, S. Bertoli, Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int. J. Mol. Sci. 16(6), 12791–12835 (2015)Google Scholar
  16. 16.
    M. Lee, Basic Skills in Interpreting Laboratory Data, vol. 1 (Bethesda, Maryland, 2009), pp. 259–266Google Scholar
  17. 17.
    H. Nyblom, U. Berggren, J. Balldin, R. Olsson, High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol. 39(4), 336–339 (2004)Google Scholar
  18. 18.
    T. Nageh, R.A. Sherwood, B.M. Harris, J.A. Byrne, M.R. Thomas, Cardiac troponin T and I and creatine kinase-MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int. J. Cardiol. 92(2–3), 285–293 (2003)Google Scholar
  19. 19.
    S. Greenhough, D.C. Hay, Stem cell-based toxicity screening: recent advances in hepatocyte generation. Pharm. Med. 26(2), 85–89 (2012)Google Scholar
  20. 20.
    E. Madrigal-Santillán, E. Madrigal-Bujaidar, I. Álvarez-González, M.T. Sumaya- Martínez, J. Gutiérrez-Salinas, M. Bautista, Á Morales-González,, J.L. Aguilar-Faisal, y González-Rubio M.G.-L., Morales-González J.A., Review of natural products with hepatoprotective effects. World J. Gastroenterol. 20(40), 14787–14804 (2014)Google Scholar
  21. 21.
    E.P. Kumar, A.D. Kumar, S. Parasuraman, V.R. Rajan, S.F. Emerson, Hepatoprotective activity of Clearliv a polyherbal formulation in Wistar rats. Arch. Med. Health Sci. 1(2), 120–125 (2013)Google Scholar
  22. 22.
    Y.J. Kim, M.S. Choi, Y.B. Park, S.R. Kim, M.K. Lee, U.J. Jung, Garcinia cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World J. Gastroenterol. 19(29), 4689–4701 (2013)Google Scholar
  23. 23.
    Association of Official Analytical Chemists, Official Methods of Analysis of the Association of Official Analytical Chemists, 13th edn. (AOAC, Arlington, 1990), pp. 233–234Google Scholar
  24. 24.
    R.A. Day, A.L. Underwood, Quantitative Analysis, 5th edn. (Prentice Hall Publication, Upper Saddle River, 1986), p. 701Google Scholar
  25. 25.
    J.B. Harborne, Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, (Chapman and Hall, London, 1973), pp. 185–188Google Scholar
  26. 26.
    P.G. Waterman, S. Mole, (Analysis of Phenolic Plant Metabolites (Ecological Methods and Concept), vol. 1 (Blackwell Scientific, Oxford,, 1994), p. 238Google Scholar
  27. 27.
    A. Meda, C.E. Lamien, M. Romito, J. Millogo, O.G. Nacoulma, Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 91, 571–577 (2005)Google Scholar
  28. 28.
    M. Oyaizu, Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44, 307-315 (1986)Google Scholar
  29. 29.
    B. Halliwell, J.M.C. Gutteridge, Formation of thiobarbituric acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 128, 347–352 (1981)Google Scholar
  30. 30.
    A. Donkor, C. Kuranchiea, P. Osei-Fosua, S. Nyarkoa, L. Doamekpora, Assessment of essential minerals and toxic trace metals in popularly consumed tea products in Ghana, a preliminary study. RJCES 3(1), 49–55 (2015)Google Scholar
  31. 31.
    R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell, Harper’s Biochemistry, 25th edn. (The MCGraw–Hill Companies, New York, 2000)Google Scholar
  32. 32.
    C.M. Tanase, P. Griffin, K.G. Koski, M.J. Cooper, K.A. Cockell, Sodium and potassium in composite food samples from the Canadian total diet study. J. Food Comp. Anal. 24, 237–243 (2011)Google Scholar
  33. 33.
    I.E. Akubugwo, N.A. Obasi, G.C. Chinyere, A.E. Ugbogu, Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo. Niger. Afr. J. Biotechnol. 6(24), 2833–2839 (2007)Google Scholar
  34. 34.
    V.W. Hays, M.J. Swenson, Minerals and Bones. Dukes’ Physiology of Domestic Animals, 10th edn. (Cornell University Press, London, 1985), pp. 449–466Google Scholar
  35. 35.
    G.R.K. Naidu, H.O. Denschlag, E. Mauerhofer, N. Porte, T. Balaji, Determination of macro, micro nutrient and trace element concentrations in Indian medicinal plants using instrumental neutron activation analysis and atomic absorption spectroscopy techniques. Appl. Radiat. Isot. 50, 947–953 (1999)Google Scholar
  36. 36.
    J.T. Barminas, M. Charles, D. Emmanuel, Mineral composition of non-conventional leafy vegetables. Plant Foods Hum. Nutr. 53, 29–36 (1998)Google Scholar
  37. 37.
    R.K. Chandra, Micronutrients and immune functions: an overview. N. Y. Acad. Sci. 587, 916–923 (1990)Google Scholar
  38. 38.
    K.L. Beck, C.A. Conlon, R. Kruger, J. Coad, Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized countries: a review. Nutrients 6(9), 3747–3776 (2014)Google Scholar
  39. 39.
    V.K. Malhotra, Biochemistry for Students, 10th edn (Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, 1998)Google Scholar
  40. 40.
    J.A. Duke, M.J. Bogenschutz-Godwin, J. duCellier, P.A. Duke, Handbook of Medicinal Herbs (CRC Press, Inc., Boca Raton, 2002), p. 936Google Scholar
  41. 41.
    A. Aberoumand, S.S. Deokule, Determination of elements profile of some wild edible plants. Food Anal. Methods 2, 116–119 (2009)Google Scholar
  42. 42.
    H.C. Schönfeldt, B. Pretorius, The nutrient content of five traditional South African dark green leafy vegetables—a preliminary study. J. Food Comp. Anal. 24(8), 1141–1146 (2011)Google Scholar
  43. 43.
    M.M. Ozcan, M.Akbulut, Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem. 106(2), 852–858 (2008)Google Scholar
  44. 44.
    M. Ali, M.N. Shuja, M. Zahoor, I. Qadri, Phytic acid: how far have we come? Afr. J. Biotechnol. 9(11), 1551–1554 (2010)Google Scholar
  45. 45.
    G. Wu, S.K. Johnson, J.F. Bornman, S.J. Bennett, V. Singh, A. Simic, Z. Fang, Effects of genotype and growth temperature on the contents of tannin, phytate and in vitro iron availability of sorghum grains. PLoS ONE 11(2), e0148712 (2016)Google Scholar
  46. 46.
    A. Aberoumand, Screening of phytochemical compounds and toxic proteinaceous protease inhibitor in some lesser-known food based plants and their effects and potentialapplications in food. Int. J. Food Sci. Nutr. Eng. 2(3), 16–20 (2012)Google Scholar
  47. 47.
    S.M. Al Hasan, M. Hassan, S. Saha, M. Islam, M. Billah, S. Islam, Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural Bangladesh: a cross-sectional study. BMC Nutr. 2(1), 110 (2016)Google Scholar
  48. 48.
    J.H. Yoon, C.S. Park, J.Y. Seo, Y.S. Choi, Y.M. Ahn, Clinical characteristics and prevalence of Vitamin D insufficiency in children less than two years of age. Korean J. Pediatr. 54, 298–303 (2011)Google Scholar
  49. 49.
    P.P. Ray, J. Jarret, K.F. Knowlton, Effect of dietary phytate on phosphorus digestibility in dairy cows. J. Dairy Sci. 96(2), 1156–1163 (2013)Google Scholar
  50. 50.
    H.G. Preuss, Bean amylase inhibitor and other carbohydrate absorption blockers: effects on diabesity and general health. J. Am. Coll. Nutr. 28(3), 266–276 (2009)Google Scholar
  51. 51.
    T.H. Ganatra, U.H. Joshi, P.N. Bhalodia, T.R. Desai, P.R. Tirgar, A panoramic view on pharmacognostic, pharmacological, nutritional, therapeutic and prophylactic values of Moringa oleifera lam. IRJP 3, 1–7 (2012)Google Scholar
  52. 52.
    S.C. Noonan, G.P. Savage, Oxalate content in foods and its effects on humans. Asia Pac. J. Clin. Nutr. 8, 64–74 (1999)Google Scholar
  53. 53.
    S.L. Fitzgerald, R.S. Gibson, J. Quan de Serrano, L. Portocarrero, A. Vasquez, E. Zepeda, C.Y. Lopez-Palacios, L. U.Thompson, A.M. Stephen, N.W. Solomons, Trace element intakes and dietary phytate/Zn and Ca × phytate/Zn millimolar ratios of periurban Guatemalan women during the third trimester of pregnancy. Am. J. Clin. Nutr. 57(2), 195–201 (1993)Google Scholar
  54. 54.
    H.F. Gemede, N. Ratta, Antinutritional factors in plant foods: potential health benefits and adverse effects. IJNFS 3(4), 284–289 (2014)Google Scholar
  55. 55.
    C. Frontela, F.J. García-Alonso, G. Ros, C. Martínez, Phytic acid and inositol phosphates in raw flours and infant cereals: the effect of processing. J. Food Comp. Anal. 21, 343–350 (2008)Google Scholar
  56. 56.
    L.G. Hassan, K.J. Umar, Z. Umar, Anti-nutritive factors in Tribulus terrestris (Linn) leaves and predicted calcium and zinc bioavailability. J. Trop. Biosci. 7, 33–36 (2007)Google Scholar
  57. 57.
    E.C.S. Mitchikpe, R.A.M. Dossa, E.D. Ategbo, J.M.A. Van Raaij, P.J.M. Hulshof, F.J. Kok, The supply of bioavailable iron and zinc may be affected by phytate in Beninese children. J. Food Comp. Anal. 21(1), 17–25 (2008)Google Scholar
  58. 58.
    A.A. Akindaunsi, G. Oboh, Effect of some post-harvest treatments on the bioavailability of zinc from some selected tropical vegetables. Riv. Ital. Sostanze Grasse 76, 285–287 (1999)Google Scholar
  59. 59.
    F.O. Adetuyi, A.U. Osagie, A.T. Adekunle, Nutrient, antinutrient, mineral and zinc bioavailability of okra Abelmoschus esculentus (L) Moench variety. Am. J. Food. Nutr. 1(2), 49–54 (2011)Google Scholar
  60. 60.
    Y. Hong, S. Lin, Y. Jiang, M. Ashraf, Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11 Eriobotrya species. Plant Foods Hum. Nutr. 63, 200–204 (2008)Google Scholar
  61. 61.
    P. Zimmermann, U. Zentgraf, The correlation between oxidative stress and leaf senescence during plant development. Cell. Mol. Biol. Lett. 10, 515–534 (2005)Google Scholar
  62. 62.
    S. Gupta, J. Prakash, Studies on Indian green leafy vegetables for their antioxidant activity. Plant Foods Hum. Nutr. 64, 39–45 (2009)Google Scholar
  63. 63.
    Anon, Glycyrrhiza glabra. Altern. Med. Rev. 10, 230–237 (2005)Google Scholar
  64. 64.
    Y. Dong, W. Gao, J. Zhang, B. Zuo, L. Huang, Quantification of four active ingredients and fingerprint analysis of licorice (Glycyrrhiza uralensis Fisch) after space flight by HPLC–DAD. Res. Chem. Intermed. 38(8), 1719–1731 (2012)Google Scholar
  65. 65.
    S. Chanda, R. Dave, In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr. J. Microbiol. Res. 3, 981–996 (2009)Google Scholar
  66. 66.
    P. Jayanthi, P. Lalitha, Reducing power of the solvent extracts of Eichhornia crassipes (Mart.) solms. Int. J. Pharm. Pharm. Sci. 3(3), 126–128 (2011)Google Scholar
  67. 67.
    F. Anwar, S. Latif, M. Ashraf, A.H. Gilani, Moringa oleifera: a food plant with multiple medicinal uses. Phytother. Res. 21, 17–25 (2007)Google Scholar
  68. 68.
    T. Siatka, M. Kašparová, Seasonal variation in total phenolic and flavonoid contents and DPPH scavenging activity of Bellis perennis L. flowers. Molecules 15, 9450–9461 (2010)Google Scholar
  69. 69.
    H. Rehman, M. Ali, F. Atif, M. Kaur, K. Bhatia, S. Raisuddin, The modulatory effect of deltamethrin on antioxidants in mice. Clin. Chim. Acta. 369(1), 61–65 (2006)Google Scholar
  70. 70.
    M. Saravanan, K.U. Devi, A. Malarivizhi, M. Remesh, Effects of Ibuprofen on haematlogical, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environ. Toxicol. Pharmacol. 34(1), 14–22 (2012)Google Scholar
  71. 71.
    S. Lavanaya, M. Ramesh, C. Kavitha, A. Malarvizhi, Haematological, biochemical and ion regulatory response of Indian major carp Carta catla during chronic sublethal exposure to inorganic arsenic. Chemosphere 82(7), 977–985 (2011)Google Scholar
  72. 72.
    E. Obi, O.E. Orisakwe, L.A. Asomugha, O.O. Udemezue, V.N. Orish, The hepatotoxic effect of halofantrine in guinea pigs. Indian J. Pharmacol. 36(5), 303–305 (2004)Google Scholar
  73. 73.
    C.O. Ibegbulem, P.C. Chikezie, E.C. Dike, Functional assessments and histopathology of hepatic and renal tissues of Wistar rats fed with cocoa containing diets. J. Nutr. Food Sci. (2015). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sule O. Salawu
    • 1
    Email author
  • Emmanuel O. Ibukun
    • 1
  • Israel A. Esan
    • 1
  1. 1.Department of BiochemistryFederal University of TechnologyAkureNigeria

Personalised recommendations