A comparative study of phytochemicals, antioxidant potential and in-vitro DNA damage protection activity of different oat (Avena sativa) cultivars from India

  • Sukriti Singh
  • Maninder KaurEmail author
  • Dalbir Singh Sogi
  • Sukhvinder Singh Purewal
Original paper


Eight Indian oat cultivars collected from different areas were investigated for the presence of bioactive compounds, their antioxidant capacities and in-vitro DNA damage protection activity. Different assays were used for quantification of antioxidant activities in oat cultivars. Preliminary analysis revealed that all oat cultivars (cv.) were rich in specific phytochemicals as their extracts showed the presence of coumarins, saponins, flavonoids, flavones, proteins, tocols, β-glucan and carbohydrates. The total phenolic and condensed tannin contents of oat cultivars ranged between 7.6 and 16.8 mg gallic acid equivalent (GAE) g−1 and 27.3–107.3 mg catechin equivalent (CE) 100 g−1, respectively. Comparisons of antioxidant activity of all oat cultivars showed that OS-6 cv. possessed the highest inhibition towards 2, 2-diphenyl-1′ picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals and also higher reducing power (8.4 mg quercetin equivalent g−1). All the extracts protected DNA from damaging effect produced during Fenton’s reaction as confirmed by the presence of DNA bands. The results indicated that phenolic compounds are potent radical scavengers as phenolic content was positively correlated to various antioxidant assays studied. The information provided in the present study will help plant breeders to select specific cv. which is rich in phenolics and other important bioactive compounds.


Oats Phytochemicals Total phenolic content Antioxidant activity Bioactive compounds 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human and animal subjects.


  1. 1.
    D. Krishnaiah, R. Sarbatly, A. Bono, Biotechnol. Mol. Biol. Rev. 1, 97 (2007)Google Scholar
  2. 2.
    M.V. Eberhardt, C.Y. Lee, R.H. Liu, Nature 405, 903 (2000)CrossRefGoogle Scholar
  3. 3.
    K.K. Adom, R.H. Liu, J. Agric. Food Chem. 50, 6182 (2002)CrossRefGoogle Scholar
  4. 4.
    R.H. Liu, J. Cereal Sci. 46, 207 (2007)CrossRefGoogle Scholar
  5. 5.
    D.M. Peterson, C.L. Emmons, A.H. Hibbs, J. Cereal Sci. 33, 97 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Kaur, S. Singh, Qual. Assur. Saf. Crops Foods 9, 285 (2017)CrossRefGoogle Scholar
  7. 7.
    H.S. Gujral, P. Sharma, R. Singh, LWT Food Sci. Technol. 44, 2223 (2011)CrossRefGoogle Scholar
  8. 8.
    D.M. Peterson, J. Cereal Sci. 33, 115 (2001)CrossRefGoogle Scholar
  9. 9.
    H. Trowell, Am. J. Clin. Nutr. 25, 926 (1972)CrossRefGoogle Scholar
  10. 10.
    N. Gangopadhyay, M.B. Hossain, D.K. Rai, N.P. Brunton, Molecules 20, 10884 (2015)CrossRefGoogle Scholar
  11. 11.
    J.G. Xu, C.R. Tian, Q.P. Hu, J.Y. Luo, X.D. Wang, J. Agric. Food Chem. 57, 10392 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Taghvaei, S.M. Jafari, J Food Sci. Technol. 52, 1272 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Cavazos, E.G. de Mejia, Compr. Rev. Food Sci. Food Saf. 12, 364 (2013)CrossRefGoogle Scholar
  14. 14.
    J.A. Nazare, S. Normand, T.A. Oste, A. Brac, M. de la Perriere, M. Desage, Laville, Mol. Nutr. Food Res. 53, 361 (2009)CrossRefGoogle Scholar
  15. 15.
    D.M. Peterson, C.M. Jensen, D.L. Hoffman, B. Mannerstedt-Fogelfors, Cereal Chem. 84, 56 (2007)CrossRefGoogle Scholar
  16. 16.
    J. Yang, B. Ou, M.L. Wise, Y. Chu, Food Chem. 160, 338 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Naczk, F. Shahidi, J. Chromatogr. A 1054, 95 (2004)CrossRefGoogle Scholar
  18. 18.
    E.A. Hayouni, M. Abedrabba, M. Bouix, M. Hamdi, Food Chem. 105, 1126 (2007)CrossRefGoogle Scholar
  19. 19.
    C.Y. Cheok, N.L. Chin, A.Y. Yusof, R.A. Talib, C.L. Law, Ind. Crop Prod. 40, 247 (2012)CrossRefGoogle Scholar
  20. 20.
    G.E. Trease, W.C. Evans, Pharmacognosy, 13th edn. (Bailliere, Tindall, London, 1996), pp. 282–396Google Scholar
  21. 21.
    D.E. Hughes, J. Pharm. Sci. 72, 126 (1983)CrossRefGoogle Scholar
  22. 22.
    L. Yu, S. Haley, J. Perret, M. Harris, Food Chem. 86, 11 (2004)CrossRefGoogle Scholar
  23. 23.
    R. Julkunen-Titto, J. Agric, Food Chem. 33, 213 (1985)CrossRefGoogle Scholar
  24. 24.
    K. Pavithra, S. Vadivukkarasi, Food Sci. Hum. Wellness 4, 42 (2015)CrossRefGoogle Scholar
  25. 25.
    C.P. Rubio, J. Hernandez-Ruiz, S. Martinez-Subiela, A. Tvarijonaviciute, J. Joaquin Ceron, BMC Vet. Res. 12, 166 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Singhal, A. Paul, H.P. Singh, J Saudi Chem. Soc. 18, 121 (2014)CrossRefGoogle Scholar
  27. 27.
    M.N. Alam, N.J. Bristi, Md. Rafiquzzaman, Saudi Pharma. J. 21, 143 (2013)CrossRefGoogle Scholar
  28. 28.
    G.C. Yen, H.Y. Chen, J. Agric. Food Chem. 43, 27 (1995)CrossRefGoogle Scholar
  29. 29.
    M. Arslan, Z. Xiaobo, H.E. Tahir, H. Xuetao, A. Rakha, S. Basheer, Z. Hao, Food Meas. (2018) Google Scholar
  30. 30.
    N. Smirnoff, Q.J. Cumbes, Phytochemistry 28, 1057 (1989)CrossRefGoogle Scholar
  31. 31.
    P. Prieto, M. Pineda, M. Aguilar, Anal. Biochem. 269, 337 (1999)CrossRefGoogle Scholar
  32. 32.
    M. Oyaizu, Jpn. J. Nutr. 44, 307 (1986)CrossRefGoogle Scholar
  33. 33.
    V. Kumar, M. Lemos, M. Sharma, V. Shriram, Free. Radic. Antiox. 3, 55 (2013)CrossRefGoogle Scholar
  34. 34.
    L. Dykes, L.W. Rooney, Cereal Foods World 52, 105 (2007)Google Scholar
  35. 35.
    A.K. Siroha, K.S. Sandhu, M. Kaur, Food Meas. 10, 311 (2016)CrossRefGoogle Scholar
  36. 36.
    M.T. Olaleye, J Med. Plant Res. 1, 009 (2007)Google Scholar
  37. 37.
    D.E. Okwu, C. Josiah, Afr. J Biotechnol. 5, 357 (2006)Google Scholar
  38. 38.
    C. Yu, M. Ranieri, D. Lv, M. Zhang, M.T. Charles, R. Tsao, D. Rekika, S. Khanizadeh, Int. J. Food Prop. 14, 59 (2011)CrossRefGoogle Scholar
  39. 39.
    R.K. Salar, S.S. Purewal, Food Meas. 11, 126 (2017)CrossRefGoogle Scholar
  40. 40.
    C.L. Emmons, D.M. Peterson, Crop Sci. 41, 1676 (1999)CrossRefGoogle Scholar
  41. 41.
    R. Hitayezu, M.M. Baakdah, J. Kinnin, K. Henderson, A. Tsopmo, J. Cereal Sci. 63, 35 (2015)CrossRefGoogle Scholar
  42. 42.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT Food Sci. Technol. 28, 25 (1995)CrossRefGoogle Scholar
  43. 43.
    K.S. Sandhu, P. Godara, M. Kaur, S. Punia, J. Saudi Soc. Agric. Sci. 16, 197 (2017)Google Scholar
  44. 44.
    J. Chlopicka, P. Pasko, S. Gorinstein, A. Jedryas, P. Zagrodzki, LWT Food Sci. Technol. 46, 548 (2012)CrossRefGoogle Scholar
  45. 45.
    L. Brindzova, M. Certik, P. Rapta, M.Z. Ibera, A. Mikulajova, M. Takacsova, Czech J. Food Sci. 26, 163 (2008)CrossRefGoogle Scholar
  46. 46.
    S. Ragaee, El-S.M. Abdel-Aal, M. Noaman, Food Chem. 98, 32 (2006)CrossRefGoogle Scholar
  47. 47.
    B. Ou, M. Hampsch-Woodill, J. Flanagan, E.K. Deemer, R.L. Prior, D. Huang, J. Agric. Food Chem. 50, 2772 (2002)CrossRefGoogle Scholar
  48. 48.
    T. Albishi, J.A. John, A.S. Al-Khalifa, F. Shahidi, J. Funct. Foods 5, 930 (2013)CrossRefGoogle Scholar
  49. 49.
    Y. Xiao, L. Wang, X. Rui, W. Li., X. Chen, M. Jiang, M. Dong, J. Funct. Foods 12, 33 (2015)CrossRefGoogle Scholar
  50. 50.
    P. Fresco, F. Borges, C. Diniz, M.P. Marques, Med. Res. Rev. 26, 747 (2006)CrossRefGoogle Scholar
  51. 51.
    C.Y. Gao, C.R. Tian, R. Zhou, R.G. Zhang, Y.H. Lu, Phenolic composition, DNA damage protective activity and hepatoprotective effect of free phenolic extract from Sphallero carpusgracilis seeds. Int. Immuno Pharm. 20, 238–247 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sukriti Singh
    • 1
  • Maninder Kaur
    • 1
    Email author
  • Dalbir Singh Sogi
    • 1
  • Sukhvinder Singh Purewal
    • 2
  1. 1.Department of Food Science and TechnologyGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of BiotechnologyChaudhary Devi Lal UniversitySirsaIndia

Personalised recommendations