Advertisement

Achachairú (Garcinia humilis): chemical characterization, antioxidant activity and mineral profile

  • Alessandra Cristina Tome
  • Eliane Teixeira Mársico
  • Flávio Alves da Silva
  • Lucilia Kato
  • Talita Pimenta do Nascimento
  • Maria Lúcia Guerra MonteiroEmail author
Original Paper
  • 149 Downloads

Abstract

The present study characterized the nutritional value, including the total phenolic compounds, antioxidant potential, and mineral profile of peel, pulp, and seed of achachairú fruit. Fruits were collected and selected for appearance, ripeness stage, absence of physical damage, and then sanitized and pulped (when fruit peel, pulp, and seed were separated). These parts were lyophilized separately to guarantee the analytical results. The results indicated high moisture content in the fruit peel (79.63%), and pulp (80.68%). Potassium was the most abundant mineral found in fruit seed (224.56 mg/100 g), followed by peel (146.32 mg/100 g), and pulp (46.32 mg/100 g), while the least abundant element was copper (peel = 0.03 mg/100 g, pulp = 0.01 mg/100 g, and seed = 0.04 mg/100 g) with no significant difference between fractions. An influence of solvent used for determination of antioxidant activity of achachairú fruit was observed, in which ethanolic extract was regarded as the best solvent for this test in all evaluated methods. Evaluation of phenolic compounds showed variable results, where the highest contents (p < 0.05) were found in aqueous extract from the peel (149.71 mg EAG/100 g), and ethereal extract from the seed (212.28 mg EAG/100 g). The highest tannin content (p < 0.05) was found in seeds, both for condensates (63.83 mg de CAE/g) and hydrolysates (11.84 mg GA/g), and there was no significant difference between results from fruit peel and pulp.

Keywords

Achachairú Total phenolic compounds Antioxidant capacity Minerals 

Notes

Acknowledgements

The authors would like to thank FAPEG—Fundação de Amparo à Pesquisa do Estado de Goiás for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    C. Caleja, L. Barros, A.L. Antonio, M.B.P.P. Oliveira, I.C.F.R. Ferreira, A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chem. 216, 342–346 (2017)Google Scholar
  2. 2.
    J.F. Almeida, A.M. Reis, L.F.S. Heldt, D. Pereira, M. Bianchin, C. Moura, M.V. Plata-Oviedo, C.W.I. Haminiuk, I.S. Ribeiro, C.F.P. Luz, S.T. Carpes, Lyophilized bee pollen extract: a natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT—Food Sci. Technol. 76(Part B), 299–305 (2016)Google Scholar
  3. 3.
    R.M. Bodoira, M.C. Penci, P.D. Ribotta, M.L. Martínez, Chia (Salvia hispanica L.) oil stability: study of the effect of natural antioxidants. LWT—Food Sci. Technol. 75, 107–113 (2017)Google Scholar
  4. 4.
    Y.M. Chong, S.K. Chang, W.C.M. Sia, H.S. Yim, Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Biosci. 12, 18–25 (2015)Google Scholar
  5. 5.
    I. Muíño, M.T. Díaz, E. Apeleo, C. Perez-Santaescolastica, A. Rivas-Cañedo, C. Perez, V. Cañeque, S. Lauzurica, J. La Fuente, Valorizations of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. J. Clean. Prod. 140(Part 2), 924–932 (2017)Google Scholar
  6. 6.
    M.S.M. Rufino, R.E. Alves, E.S. Brito, J. Pérez-Jiménez, F. Saura-Calixto, J. Mancini-Filho, Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 121(4), 996–1002 (2010)Google Scholar
  7. 7.
    M. Barbouchi, K. Elamrani, M.E. Idrissi, M. Choukrad, A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L, J. King Saud Univ. (2018).  https://doi.org/10.1016/j.jksus.2018.05.010 Google Scholar
  8. 8.
    S.A. Socaci, A.C. Farcas¸, Z.M. Diaconeasa, D.C. Vodnar, B. Rusu, M. Tofan, Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’ spent grain. J. Cereal Sci. 80, 180–187 (2018)Google Scholar
  9. 9.
    I.I. Rockenbach, G.L. Silva, E. Rodrigues, E.M. Kuskoski, R. Fett, Solvent Influence on total polyphenol content, anthocyanins, and antioxidant activity of grape (Vitis vinifera) bagasse extracts from Tannat and Ancelota—different varieties of Vitis vinifera varieties. Food Sci. Technol. 28(Supl.), 238–244 (2018)Google Scholar
  10. 10.
    R.G.C. Barros, J.K.S. Andrade, M. Denadai, M.L. Nunes, N. Narain, Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res. Int. 102, 84–92 (2017)Google Scholar
  11. 11.
    L.B. Virgolin, F.R.F. Seixas, N.S. Janzantti. Composition, content of bioactive compounds, and antioxidant activity of fruit pulps from the Brazilian Amazon biome. Pesq. Agropec. Bras. 52(10), 933–941 (2017)Google Scholar
  12. 12.
    A. Berto, A.F. Silva, V.J. Visentainer, M. Matsushita, N.E. Souza, Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits. Food Res. Int. 77(Part 3), 441–449 (2015)Google Scholar
  13. 13.
    M. Barea-Álvarez, C. Delgado-Andrade, A. Haro, M. Manuel Olalla, I. Seiquer, J. Rufián-Henares, Subtropical fruits grown in Spain and elsewhere: a comparison of mineral profiles. J. Food Compos. Anal. 48, 34–40 (2016)Google Scholar
  14. 14.
    E. Soprano, Estação experimental de Itajaí testa fruta exótica. Available at http://www.epagri.sc.gov.br/ (2010)
  15. 15.
    B.D. Ardaya, Cultivo de achachairu Garcinia humilis: manual de recomendaciones, 1st edn. (Centro de Investigacíon Agricola, Bolívia, 2009), pp. 1–103Google Scholar
  16. 16.
    G. Deng, C. Shen, X. Xu, R. Kuang, Y. Guo, L. Zeng, L. Gao, X. Lin, J. Xie, E. Xia, S. Li, S. Wu, F. Chen, W. Ling, H. Li, Potential of fruit wastes as natural resources of bioactive compounds. Int J Mol Sci. 13(7), 8308–8323 (2012)Google Scholar
  17. 17.
    AOAC, Official Methods of Analysis, (Association of Official Analytical Chemists, Gaithersburg, 2012)Google Scholar
  18. 18.
    E.G. Bligh, J. Dyer, A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37(8), 911–917 (1959)Google Scholar
  19. 19.
    A.L. Merrill, B.K. Watt, Energy Value of Foods: Basis and Derivation, 1st edn. (Departamento de Agricultura dos Estados Unidos, Washington, 1973), pp. 8–48Google Scholar
  20. 20.
    EMBRAPA, Manual de Métodos de Análise de Solos, 1st edn. (EMBRAPA, Rio de Janeiro, 1997), pp. 81–181Google Scholar
  21. 21.
    E. Malavolta, G.C. Viltti, S.A. Oliveira, Avaliação do Estado Nutricional Das Plantas: Princípios e Aplicações, 1st edn. (Potafos, Piracicaba, 1997), pp. 231–305Google Scholar
  22. 22.
    A. Mir-Marqués, A. Domingo, M.L. Cervera, M. Guardia, Mineral profile of kaki fruits (Diospyros kaki L.). Food Chem. 172, 291–297 (2015)Google Scholar
  23. 23.
    R.J. Marles, Mineral nutrient composition of vegetables, fruits and grains: the context of reports of apparent historical declines. J. Food Compos. Anal. 56, 93–103 (2017)Google Scholar
  24. 24.
    W. Brand-Willians, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28(1), 25–30 (1995)Google Scholar
  25. 25.
    R.G. Borguini, E.A.F.S. Torres, Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int. 25(4), 313–325 (2009)Google Scholar
  26. 26.
    I.F.F. Benzie, J.J. Strain, Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996)Google Scholar
  27. 27.
    R. Re, N. Pelegrini, A. Proteggente, A. Pannala, M. Yang, C. Riceevans, Antioxidant activity applying an improved ABTS●+ radical cation decolorization assay. Free Radic. Biol. Med. 26(9–10), 1231–1237 (1999)Google Scholar
  28. 28.
    A.L. Waterhouse, Polyphenolics: determination of total phenolics, in Current Protocols in Food Analytical Chemistry, ed. by R.E. Wrolstad (Wiley, New York, 2002), pp. 111–118Google Scholar
  29. 29.
    M.L. Price, A.V. Scoyoc, L.G. Butler, A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26(5), 1214–1218 (1978)Google Scholar
  30. 30.
    M.T. Barcia, P.B. Pertuzatti, A.C. Jacques, H.T. Godoy, R. Zambiazi, Bioactive compounds, antioxidant activity and percent composition of jambolão fruits (Syzygium cumini). Nat. Prod. J. 2(2), 129–138 (2012)Google Scholar
  31. 31.
    M. Brune, L. Hallberg, A. Skanberg, Determination of iron-binding phenolic groups in foods. J. Food Sci. 56(1), 128–131 (1991)Google Scholar
  32. 32.
    P. Pacheco, J.G. Paz, C.O. Silva, G.B. Pascola, Composição centesimal, compostos bioativos e parâmetros físico-químicos do jenipapo (Genipa americana L.) in natura. Demetra 9(4), 1041–1054 (2014)Google Scholar
  33. 33.
    P. Galaz, M. Valdenegro, C. Ramírez, H. Nunez, S. Almonacid, R. Simpson, Effect of drum drying temperature on drying kinetic and polyphenol contents in pomegranate peel. J. Food Eng. 208, 19–27 (2017)Google Scholar
  34. 34.
    L.E. Garcia-Amezquita, V. Tejada-Ortigoza, E. Heredia-Olea, S.O. Serna-Saldívar, J. Welti-Chanes, Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. J. Food Compos. Anal. 67, 77–85 (2018)Google Scholar
  35. 35.
    E. Joaquín-Cruz, M. Dueñas, L. García-Cruz, Y. Salinas-Moreno, C. Santos-Buelga, C. García-Salinas, Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: a tropical source of natural pigments. Food Res. Int. 70, 151–157 (2015)Google Scholar
  36. 36.
    A.M. Batista, E.M. Silva, E.I.G. Silva, Consumo alimentar de magnésio, potássio e fósforo por adolescentes de uma escola pública. Saúde Pesq. 9(1), 73–82 (2016)Google Scholar
  37. 37.
    F. Cao, C. Guan, H. Dai, X. Li, Z. Zhang, Soluble solids content is positively correlated with phosphorus content in ripening strawberry fruits. Sci. Hortic. 195, 183–187 (2015)Google Scholar
  38. 38.
    C.S. Shin, K.M. Kim, Cálcio, é melhor ter menos? Perspectivas Globais de Saúde. J. Cell Biochem. 116, 1513–1521 (2015)Google Scholar
  39. 39.
    J.H. Cunningham, G. Milligan, L. Trevisan, Minerals in Australian Fruits and Vegetables a Comparison of Levels Between the 1980 and 2000. Food Standards Australia New Zealand, Australia New Zealand (2002). http://www.foodstandards.gov.au/publications/documents/minerals_report.pd
  40. 40.
    M.I.F. Chitarra, A.B. Chitarra, Pós-Colheita de Frutos e Hortaliças: Fisiologia e Manuseio, 2. ed. rev. e ampl (UFLA, Lavras, 2005)Google Scholar
  41. 41.
    J.T. Milanez, L.C. Neves, R.C. Colombo, M. Shahab, S.R. Roberto, Bioactive compounds and antioxidant activity of buriti fruits, during the postharvest, harvested at different ripening stages. Sci. Hortic. 227, 10–21 (2018)Google Scholar
  42. 42.
    J.S. Lira Junior, R.S. Musser, E.A. Melo, M.I.S. Maciel, I.E. Lederman, V.E. Santos, Caracterização física e físico-química de frutos de cajá-umbu (Spondias spp.). Ciênc. Tecnol. Aliment. 25(4), 757–761 (2005)Google Scholar
  43. 43.
    S.C. Jesus, M.I.S. Folegatti, F.C.A.U. Matsuura, R.L. Cardoso, Caracterização física e química de frutos de diferentes genótipos de bananeira. Bragantina 63(3), 315–323 (2004)Google Scholar
  44. 44.
    M. Carocho, I.C. Ferreira, A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51, 15–25 (2013)Google Scholar
  45. 45.
    V.M. Jiménez, E. Mora-Newcomer, M.V. Gutiérrez-Soto, Biology of the papaya plant, in Genetics and Genomics of Papaya, Plant Genetics and Genomics: Crops and Models, ed. by R. Ming, P.H. Moore (Springer, New York, 2014), pp. 17–33Google Scholar
  46. 46.
    L. Carrillo-Hormaza, A.M. Ramírez, C. Quintero-Ortiz, M. Cossio, S. Medina, F. Ferreres, A. Gil-Izquierdo, E. Osorio, Comprehensive characterization and antioxidante activities of the main biflavonoids of Garcinia madruno: A novel tropical species for developing functional products. J. Funct. Foods 27, 503–516 (2016)Google Scholar
  47. 47.
    K.D.R.R. Silva, M.S.F. Sirasa, Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem. 238, 203–208 (2018)Google Scholar
  48. 48.
    M.B. Muniz, J.M. Queiroz, R.M.F. Figueirêdo, M.E.M. Duarte, Caracterização termofísica de polpas de bacuri. Ciênc. Tecnol. Aliment. 26(2), 360–368 (2006)Google Scholar
  49. 49.
    E.A. Melo, M.I.S. Maciel, V.A.G.L. Lima, R.J. Nascimento, Capacidade antioxidante de frutas. Rev. Bras. Ciênc. Farm. 44(2), 193–201 (2008)Google Scholar
  50. 50.
    S. Zang, S. Tian, J. Jiang, D. Han, X. Yu, K. Wang, D. Li, D. Lu, A. Yu, Z. Zhang, Determination of antioxidant capacity of diverse fruits by electron spin resonance (ESR) and UV–Vis spectrometries. Food Chem. 221, 1221–1225 (2017)Google Scholar
  51. 51.
    E.M. Kuskoski, A.G. Asuero, A.M. Troncoso, J. Mancini-Filho, R. Fett, Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci. Technol. 25(4), 726–732 (2005)Google Scholar
  52. 52.
    A. Moure, J.M. Cruz, D. Franco, J.M. Domínguez, J. Sineiro, H. Domínguez, M.J. Nunez, J.C. Parajo, Natural antioxidants from residual sources. Food Chem. 72(2), 145–171 (2001)Google Scholar
  53. 53.
    C.H. Degáspari, N. Waszczynskyj, M.R. Prado, Atividade antimicrobiana de Schinus terebinthifolius Raddi. Ciênc. Agrotéc. 29(3), 617–622 (2005)Google Scholar
  54. 54.
    M.A. Tessmer, R.A. Kluge, B.A. Glória, The accumulation of tannins during the development of ‘Giombo’ and ‘Fuyu’ persimmon fruits. Sci. Hortic. 172, 292–299 (2014)Google Scholar
  55. 55.
    C.M.J. Benevides, M.V. Souza, R.D.B. Souza, M.V. Lopes, Antinutritional factors in foods: a review. Segur. Aliment. Nutr. 18, 67–79 (2011)Google Scholar
  56. 56.
    M.R.P. Monteiro, M.A. Moreira, N.M.B. Costa, M.G.A. Oliveira, C.V. Pires, Avaliação da digestibilidade protéica de genótipos de soja com ausência e presença do inibidor de tripsina Kunitz e lipoxigenases. Braz. J. Food Technol. 6, 99–107 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alessandra Cristina Tome
    • 1
  • Eliane Teixeira Mársico
    • 2
  • Flávio Alves da Silva
    • 1
  • Lucilia Kato
    • 3
  • Talita Pimenta do Nascimento
    • 3
  • Maria Lúcia Guerra Monteiro
    • 2
    Email author
  1. 1.Department of Food Engineering, School of AgronomyFederal University of GoiásGoiâniaBrazil
  2. 2.Department of Food TechnologyFederal University FluminenseNiteróiBrazil
  3. 3.Departament of Chemical InstituteFederal University of GoiásGoiâniaBrazil

Personalised recommendations