Journal of Food Measurement and Characterization

, Volume 12, Issue 4, pp 2835–2843 | Cite as

Chemical characterisation and antioxidant activity of Aphandra natalia mesocarp and its oil from the Amazon region of Ecuador

  • Derwin Viafara
  • Reinier Abreu-NaranjoEmail author
  • José Miguel Alvarez-Suarez
  • Jorge Julio Reyes-Mera
  • Magdalena Barreno-Ayala
Original Paper


The Aphandra natalia palm is a species of monotypic genus Aphandra belonging to the Arecaceae family and is native to South America, mainly in the western part of the Amazon basin in Ecuador, Peru, and Brazil. In this study, we determined the physicochemical characteristics of A. natalia fruit mesocarp, as well as its fatty acid composition, the total polyphenol content (TPC), lipophilic antioxidant compounds and total antioxidant capacity. The fatty acids profile was determined using GC–MS analysis and TPC and antioxidant activity by Folin Ciocalteu’s reagent method and by radical scavenging activity (1,1-diphenyl-2-picrylhydrazyl free radical [DPPH]), respectively regarding their oil. A high value of 57.92% of total lipids was obtained, thus it can be considered as new source of vegetable oil. The oil extracted from A. natalia mesocarp had a high oleic acid content (71.92%), which is a characteristic closer to the composition of olive oil than traditional palm oil. TPC value (83.57 ± 1.84 mg GAE kg−1 of oil) obtained from A. natalia fruit pulp oil is similar to some olive oil varieties. However, its oil presents smaller antioxidant activity than olive oils usually have.


Aphandra natalia Edible oils Fatty acid profile Gas chromatography 



This work was supported by Universidad Estatal Amazónica, Puyo, Ecuador and Universidad de Las Américas, Quito, Ecuador (Grant no. VET.JMA.17.05, 2017).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    A.S. Barfod (1991) A Monographic Study of the Subfamily Phytelephantoideae (Arecaceae). (Council for Nordic Publications in Botany, Copenhagen)Google Scholar
  2. 2.
    A. Henderson, G. Galeano-Garces, R. Bernal, Field Guide to the Palms of the Americas (Princeton University Press, Princeton, 1997)Google Scholar
  3. 3.
    M. Kronborg, C.A. Grández, E. Ferreira, H. Balslev, Aphandra natalia (Arecaceae): a little known source of piassaba fibers from the western Amazon. Rev. Peru. Biol. 15(3), 11 (2014). CrossRefGoogle Scholar
  4. 4.
    T. Boll, J.-C. Svenning, J. Vormisto, S. Normand, C. Grández, H. Balslev, Spatial distribution and environmental preferences of the piassaba palm Aphandra natalia (Arecaceae) along the Pastaza and Urituyacu rivers in Peru. For. Ecol. Manag. 213(1), 175–183 (2005). CrossRefGoogle Scholar
  5. 5.
    J.V. Runk, Productivity and sustainability of a vegetable ivory palm (Phytelephas aequatorialis, arecaceae) under three management regimes in Northwestern Ecuador. Econ. Bot. 52(2), 168–182 (1998). CrossRefGoogle Scholar
  6. 6.
    H.B. Pedersen, Production and harvest of fibers from Aphandra natalia (Palmae) in Ecuador. For. Ecol. Manag. 80(1), 155–161 (1996). CrossRefGoogle Scholar
  7. 7.
    M.F. Ramadan, J.-T. Mörsel, Oil cactus pear (Opuntia ficus-indica L.). Food Chem. 82(3), 339–345 (2003). CrossRefGoogle Scholar
  8. 8.
    B.S. Kamel, Y. Kakuda (2007) Fatty acids in Fruits and Fruit Products. Acids in Foods and Their Health Implications (CRC Press, Boca Raton), pp. 263–301Google Scholar
  9. 9.
    C.K. Chow (2007) Fatty Acids in Foods and their Health Implications, 3rd edn. (CRC Press, Boca Raton)CrossRefGoogle Scholar
  10. 10.
    E.H. Pryde, L. Princen, K.D. Mukherjee (1981) New Sources of Fats and Oils, vol 9. (The American Oil Chemists Society, Champaign)Google Scholar
  11. 11.
    K.J. Goh, C.K. Wong, P.H.C. Ng, Oil palm A2: thomas, brian, in Encyclopedia of Applied Plant Sciences, 2nd edn., ed. by B.G. Murray, D.J. Murphy (Academic Press, Oxford, 2017), pp. 382–390, CrossRefGoogle Scholar
  12. 12.
    K. Tanilgan, M.M. Özcanb, A. Ünverb (2007) Physical and chemical characteristics of five Turkish olive (Olea europea L.) varieties and their oils. Grasas y Aceites 58(2):6. CrossRefGoogle Scholar
  13. 13.
    E. Fuentes, F. Paucar, F. Tapia, J. Ortiz, P. Jimenez, N. Romero (2018) Effect of the composition of extra virgin olive oils on the differentiation and antioxidant capacities of twelve monovarietals. Food Chem. 243(Supplement C):285–294. CrossRefPubMedGoogle Scholar
  14. 14.
    T. Srdić-Rajić, A. Konić Ristić, Antioxidants: role on health and prevention, in Encyclopedia of Food and Health, ed. by B.G. Caballero, P.M. Finglas, F. Toldra (Academic Press, Oxford, 2016), pp. 227–233. CrossRefGoogle Scholar
  15. 15.
    H.R. Griffiths, Antioxidants: characterization and analysis, in Encyclopedia of Food and Health, ed. by B.G. Caballero, P.M. Finglas, F. Toldra (Academic Press, Oxford, 2016), pp. 221–226. CrossRefGoogle Scholar
  16. 16.
    A. Zygler, M. Słomińska, J. Namieśnik, 2.04: Soxhlet extraction and new developments such as Soxtec A2, in Comprehensive Sampling and Sample Preparation, ed. by J. Pawliszyn (Academic Press, Oxford, 2012), pp. 65–82. CrossRefGoogle Scholar
  17. 17.
    M.D. Luque de Castro, F. Priego-Capote, Soxhlet extraction: past and present panacea. J. Chromatogr. A 1217(16), 2383–2389 (2010). CrossRefPubMedGoogle Scholar
  18. 18.
    ASTM-E1757-01, Standard Practice for Preparation of Biomass for Compositional Analysis (ASTM International, West Conshohocken, PA, 2007)Google Scholar
  19. 19.
    G.W.J. Latimer, A. International, P. Cunniff, Official Methods of Analysis of AOAC International (AOAC International, Rockville, 2016)Google Scholar
  20. 20.
    M.G. Pereira, F. Hamerski, E.F. Andrade, AdP. Scheer, M.L. Corazza, Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. J. Supercrit. Fluids 128(Supplement C), 338–348 (2017). CrossRefGoogle Scholar
  21. 21.
    L.H. Tee, B. Yang, B.T. Tey, E.-S. Chan, A. Azlan, A. Ismail, J. Sun, C.Y. Lau, U.D. Palanisamy, R.N. Ramanan, Valorization of Dacryodes rostrata fruit through the characterization of its oil. Food Chem. 235, 257–264 (2017)CrossRefGoogle Scholar
  22. 22.
    AOCS, Official Method Ce 1b-89 Fatty Acid Composition by GC. Marine Oils (AOCS, Champaign, IL, 1998)Google Scholar
  23. 23.
    A. Baiano, G. Gambacorta, C. Terracone, M.A. Previtali, C. Lamacchia, E. La Notte, Changes in phenolic content and antioxidant activity of italian extra-virgin olive oils during storage. J. Food Sci. 74(2), C177–C183 (2009). CrossRefPubMedGoogle Scholar
  24. 24.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178. CrossRefGoogle Scholar
  25. 25.
    R.J. Porra, The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73(1–3), 149–156 (2002)CrossRefGoogle Scholar
  26. 26.
    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D. Hawkins Byrne, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19(6–7), 669–675 (2006). CrossRefGoogle Scholar
  27. 27.
    A. Gordon, A.P.G. Cruz, L.M.C. Cabral, S.C. de Freitas, C.M.A.D. Taxi, C.M. Donangelo, R. de Andrade Mattietto, M. Friedrich, V.M. da Matta, F. Marx, Chemical characterization and evaluation of antioxidant properties of Açaí fruits (Euterpe oleraceae Mart.) during ripening. Food Chem. 133(2), 256–263 (2012). CrossRefPubMedGoogle Scholar
  28. 28.
    H.H.F. Koolen, F.M.A. da Silva, V.S.V. da Silva, W.H.P. Paz, G.A. Bataglion, Buriti fruit—Mauritia flexuosa, in Exotic Fruits, ed. by S. Rodrigues, E. de Oliveira Silva, E.S. de Brito (Academic Press, Boca Raton, 2018), pp 61–67. CrossRefGoogle Scholar
  29. 29.
    C.R. Clement, J.C. Weber, J. van Leeuwen, C.A. Domian, D.M. Cole, L.A.A. Lopez, H. Argüello, Why extensive research and development did not promote use of peach palm fruit in Latin America, in New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry, 2004, ed. by P.K.R. Nair, M.R. Rao, L.E. Buck (Springer Netherlands, Dordrecht, 2004), pp. 195–206. CrossRefGoogle Scholar
  30. 30.
    K. Vivek, S. Mishra, R.C. Pradhan, Physicochemical characterization and mass modelling of Sohiong (Prunus nepalensis L.) fruit. J. Food Meas. Charact. 12(2), 923–936 (2018). CrossRefGoogle Scholar
  31. 31.
    E.H.A. Andrade, MdG.B. Zoghbi, J.G.S. Maia, H. Fabricius, F. Marx, Chemical characterization of the fruit of Annona squamosa L. occurring in the Amazon. J. Food Compos. Anal. 14(2), 227–232 (2001). CrossRefGoogle Scholar
  32. 32.
    D.P. Leão, A.S. Franca, L.S. Oliveira, R. Bastos, M.A. Coimbra, Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chem. 225, 146–153 (2017). CrossRefPubMedGoogle Scholar
  33. 33.
    J.F.C. Guerra, P.S. Maciel, I.C.M.E. de Abreu, R.R. Pereira, M. Silva, LdM. Cardoso, H.M. Pinheiro-Sant’Ana, M.E. Lima WGd, Silva, M.L. Pedrosa, Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J. Funct. Foods 14, 192–202 (2015). CrossRefGoogle Scholar
  34. 34.
    C.A. Commission, Codex-Stan 210: Codex Standard for Named Vegetable Oils (FAO, Rome, Italy, 2008)Google Scholar
  35. 35.
    V.R. Preedy, R.R. Watson, V.B. Patel, Nuts and Seeds in Health and Disease Prevention (Academic press, Boca Raton, 2011)Google Scholar
  36. 36.
    S. Bhattacharya (2011) Seeds as herbal drugs, in Nuts and Seeds in Health and Disease Prevention, ed. by V. Preedy, R. Watson, V. Patel (Elsevier, Boca Raton), pp 15–24CrossRefGoogle Scholar
  37. 37.
    M. González-Santiago, J. Fonollá, E. Lopez-Huertas, Human absorption of a supplement containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its transient association with low-density lipoproteins. Pharmacol Res 61(4), 364–370 (2010). CrossRefPubMedGoogle Scholar
  38. 38.
    A. Keys, Mediterranean diet and public health: personal reflections. Am. J. Clin. Nutr. 61(6), 1321S–1323S (1995)CrossRefGoogle Scholar
  39. 39.
    S.M. Grundy, L. Florentin, D. Nix, M.F. Whelan, Comparison of monounsaturated fatty acids and carbohydrates for reducing raised levels of plasma cholesterol in man. Am. J. Clin. Nutr. 47(6), 965–969 (1988)CrossRefGoogle Scholar
  40. 40.
    S.M. Grundy, Monounsaturated fatty acids and cholesterol metabolism: implications for dietary recommendations. J. Nutr. 119(4), 529–533 (1989)CrossRefGoogle Scholar
  41. 41.
    A. Varela-Lopez, M.P. Pérez-López, C.L. Ramirez-Tortosa, M. Battino, S. Granados-Principal, M. del Carmen Ramirez-Tortosa, J.J. Ochoa, L. Vera-Ramirez, F. Giampieri, J.L. Quiles, Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. J. Nutr. Biochem. 52, 36–44 (2018)CrossRefGoogle Scholar
  42. 42.
    Y. Ouni, A. Taamalli, A.M. Gómez-Caravaca, A. Segura-Carretero, A. Fernández-Gutiérrez, M. Zarrouk, Characterisation and quantification of phenolic compounds of extra-virgin olive oils according to their geographical origin by a rapid and resolutive LC–ESI-TOF MS method. Food Chem. 127(3), 1263–1267 (2011). CrossRefPubMedGoogle Scholar
  43. 43.
    R.W. Owen, A. Giacosa, W.E. Hull, R. Haubner, G. Würtele, B. Spiegelhalder, H. Bartsch, Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol. 1(2), 107–112 (2000). CrossRefPubMedGoogle Scholar
  44. 44.
    J. Pokorny, N. Yanishlieva, M.H. Gordon, Antioxidants in Food: Practical Applications (CRC Press, Boca Raton, 2001)Google Scholar
  45. 45.
    M. Radice, D. Viafara, D. Neill, M. Asanza, G. Sacchetti, A. Guerrini, S. Maietti, Chemical characterization and antioxidant activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth seed oils. J. Oleo Sci. 63(12), 1243–1250 (2014)CrossRefGoogle Scholar
  46. 46.
    V. Polychniatou, C. Tzia, Evaluation of surface-active and antioxidant effect of olive oil endogenous compounds on the stabilization of water-in-olive-oil nanoemulsions. Food Chem. 240(Supplement C), 1146–1153. (2018). CrossRefPubMedGoogle Scholar
  47. 47.
    E. Nwaichi, L. Chuku, N. Oyibo, Profile of ascorbic acid, beta-carotene and lycopene in guava, tomatoes, honey and red wine. Int. J. Curr. Microbiol. Appl. Sci. 4(2), 39–43 (2015)Google Scholar
  48. 48.
    E.J. Johnson, The role of carotenoids in human health. Nutr. Clin. Care 5(2), 56–65 (2002)CrossRefGoogle Scholar
  49. 49.
    O. Moreiras, A. Carbajal, L. Cabrera, C. Cuadrado, Tablas de composición de alimentos. 16.a Edición edn (Ediciones Pirámide, Madrid, 2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencias de la VidaUniversidad Estatal Amazónica (UEA)PuyoEcuador
  2. 2.Facultad de Ingeniería y Ciencias Agropecuarias (FICA), Grupo de Investigación en Biotecnología Aplicada a Biomedicina (BIOMED)Universidad de Las AméricasQuitoEcuador
  3. 3.Departamento de Ciencias de la TierraUniversidad Estatal Amazónica (UEA)PuyoEcuador

Personalised recommendations