Extraction optimization, preliminary characterization, and bioactivities of polysaccharides from Silybum marianum meal

  • Haoran Fan
  • Jinpeng Wang
  • Qingran Meng
  • Zhengyu JinEmail author
Original Paper


Silybum marianum meal is the major by-product in silymarin extraction, and most S. marianum meal is disposed of because of its huge output. To develop new physiologically active polysaccharides from S. marianum meal, two polysaccharide fractions (SMP2-1 and SMP4-1) were isolated and their innate primary chemical structure and bioactivities including antioxidant, hemolysis inhibitory, and α-amylase and α-glucosidase inhibitory activities were investigated. Structural analyses indicated that SMP2-1 had higher molecular weight (45.5 kDa) than SMP4-1 (4.9 kDa) and both comprised of arabinose, galactose, glucose, xylose, and mannose in a similar molar ratio, and the arabinose and galactose were the dominant sugars. FTIR results showed that SMP2-1 and SMP4-1 containing similar functional groups since they exhibited similar spectral characteristics. SMP2-1 exhibited better bioactivities than SMP4-1 including DPPH radical, ABTS radical, hydroxyl radical, and superoxide anion radical scavenging activities, hemolysis inhibitory, and α-amylase and α-glucosidase inhibitory. These data suggested that S. marianum polysaccharide fractions have potential to be explored as a functional food or complementary medicine.


Silybum marianum Polysaccharides Characterization Bioactivities 



This project was supported by the National Natural Science Foundation of China (Grant No. 31230057, 31401524) and National First-Class Discipline Program of Food Science and Technology (JUFSTR20180203).

Compliance with Ethical Standards

Conflict of interest

All the authors declare that they have no conflict of interest.


  1. 1.
    S.F. AbouZid, S.-N. Chen, J.B. McAlpine, J.B. Friesen, G.F. Pauli, Fitoterapia 112, 136–143 (2016)CrossRefGoogle Scholar
  2. 2.
    A.P. Cardile, G.K.N. Mbuy, J. Herb. Med. 3(4), 132–136 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Csupor, A. Csorba, J. Hohmann, J. Pharm. Biomed. 130, 301–317 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Poppe, M. Petersen, Phytochemistry 131, 68–75 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Wellington, B. Jarvis, BioDrugs 15(7), 465–489 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Kozarski, A. Klaus, M. Niksic, D. Jakovljevic, J.P.F.G. Helsper, L.J.L.D. Van Griensven, Food Chem. 129(4), 1667–1675 (2011)CrossRefGoogle Scholar
  7. 7.
    Z. Xu, H. Wang, B. Wang, L. Fu, M. Yuan, J. Liu, L. Zhou, C. Ding, Int. J. Biol. Macromol. 92, 148–155 (2016)CrossRefGoogle Scholar
  8. 8.
    Z. Yu, L. Liu, Y. Xu, L. Wang, X. Teng, X. Li, J. Dai, Carbohyd. Polym. 132, 180–186 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Fan, X. He, S. Zhou, A. Luo, T. He, Z. Chun, Int. J. Biol. Macromol. 45(2), 169–173 (2009)CrossRefGoogle Scholar
  10. 10.
    G. Zhou, Y. Sun, H. Xin, Y. Zhang, Z. Li, Z. Xu, Pharmacol. Res. 50(1), 47–53 (2004)CrossRefGoogle Scholar
  11. 11.
    Y.L. Huang, C.J. Chow, Y.H. Tsai, Food Chem. 134(4), 1967–1972 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Jia, C. Zhang, J. Qiu, L. Wang, J. Bao, K. Wang, Y. Zhang, M. Chen, J. Wan, H. Su, J. Han, C. He, Carbohyd. Polym. 132, 67–71 (2015)CrossRefGoogle Scholar
  13. 13.
    T.-B. He, Y.-P. Huang, L. Yang, T.-T. Liu, W.-Y. Gong, X.-J. Wang, J. Sheng, J.-M. Hu, Int. J. Biol. Macromol. 83, 34–41 (2016)CrossRefGoogle Scholar
  14. 14.
    K.B. Jeddou, F. Chaari, S. Maktouf, O. Nouri-Ellouz, C.B. Helbert, R.E. Ghorbel, Food Chem. 205, 97–105 (2016)CrossRefGoogle Scholar
  15. 15.
    W. Wei, L. Feng, W.R. Bao, D.L. Ma, C.H. Leung, S.P. Nie, Q.B. Han, J. Agr. Food Chem. 64(4), 881–889 (2016)CrossRefGoogle Scholar
  16. 16.
    Q. Meng, Y. Li, T. Xiao, L. Zhang, D. Xu, Int. J. Biol. Macromol. 105, 431–437 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Ibarz, A. Pagán, F. Tribaldo, J. Pagán, Food Control. 17, 890–893 (2006)CrossRefGoogle Scholar
  18. 18.
    T. Bitter, H.M. Muir, Anal. Biochem. 4(4), 330–334 (1962)CrossRefGoogle Scholar
  19. 19.
    J. Kjeldahl, Zeitschrift für analytische Chemie 22(1), 366–382 (1883)CrossRefGoogle Scholar
  20. 20.
    J. Wang, Y. Wang, X. Liu, Y. Yuan, T. Yue, Carbohyd. Polym. 91(1), 33–38 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Luo, X. He, S. Zhou, Y. Fan, T. He, Z. Chun, Int. J. Biol. Macromol. 45(4), 359–363 (2009)CrossRefGoogle Scholar
  22. 22.
    Z. Liu, J. Dang, Q. Wang, M. Yu, L. Jiang, L. Mei, Y. Shao, Y. Tao, Int. J. Biol. Macromol. 61, 127–134 (2013)CrossRefGoogle Scholar
  23. 23.
    Y.-I. Kwon, E. Apostolidis, K. Shetty, J. Food Biochem. 32(1), 15–31 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Lordan, T.J. Smyth, A. Soler-Vila, C. Stanton, R.P. Ross, Food Chem. 141(3), 2170–2176 (2013)CrossRefGoogle Scholar
  25. 25.
    L. Han, Y. Suo, Y. Yang, J. Meng, N. Hu, Int. J. Biol. Macromol. 85, 655–666 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Kong, L. Yu, T. Feng, X. Yin, T. Liu, L. Dong, Carbohyd. Polym. 125, 1–8 (2015)CrossRefGoogle Scholar
  27. 27.
    Q. Meng, H. Fan, D. Xu, W. Aboshora, Y. Tang, T. Xiao, L. Zhang, Int. J. Food Sci. Tech. 52(6), 1440–1451 (2017)CrossRefGoogle Scholar
  28. 28.
    X. Wang, X. Lü, Carbohyd. Polym. 102, 174–184 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Banerjee, N. Dasgupta, B. De, Food Chem. 90(4), 727–733 (2005)CrossRefGoogle Scholar
  30. 30.
    Q.-H. Zeng, C.-L. Lu, X. Zhang, J.-G. Jiang, Food Funct. 6(2), 431–443 (2015)CrossRefGoogle Scholar
  31. 31.
    U. Etxeberria, A.L. de la Garza, J. Campión, J.A. Martínez, F.I. Milagro, Expert Opin. Ther. Targets 16(3), 269–297 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxiChina
  3. 3.Synergetic Innovation Center of Food Safety and NutritionJiangnan UniversityWuxiChina

Personalised recommendations