Effect of nutraceuticals (beta-glucan concentrate, flaxseed lignan concentrate and gamma oryzanol concentrate) on nutritional, textural, pasting, thermal, structural and morphological properties of corn and rice flour blend based RTE extrudates

  • Jasmeet Kour
  • Sukhcharn Singh
  • Dharmesh Chandra Saxena
Original Paper


Extrudates of corn and rice flour blend was prepared by substituting with low and high levels of beta-glucan isolated from barley flour, lignans isolated from flaxseed and gamma oryzanol isolated from rice bran oil using response surface methodology. All the optimized extrudates were characterized for their nutritional, textural, pasting, thermal, structural (X-ray diffraction (XRD)) and morphological (scanning electron microscopy (SEM)) properties. After extrusion, the fortified optimized samples retained 82.67 and 90.83% of beta-glucan, 86.31 and 66.66% of lignans and 71.33 and 51.67% of gamma oryzanol at their respective low and high levels. An increase in the textural hardness was reported in fortified samples as compared to control. A decline in the pasting characteristics was observed with substitution with each isolate in the all the flour blends. There was an increase in the Tonset, Tendset and Tpeak and decrease in the enthalpy of optimized fortified samples. XRD analysis showed that crystallinity decreased with the addition of beta-glucan concentrate as well as oryzanol concentrate but increased with the addition of lignan concentrate. SEM showed thicker cell walls and compactness with addition of beta-glucan and lignan concentrate. A higher level of cellular degradation was observed in the samples substituted with gamma oryzanol concentrate at both levels.


Beta-glucan Lignan Oryzanol Nutraceuticals Concentrates 



The authors would like to give special thanks to Mr. Giteshwar Kalia, R and D manager, A P Organics Ltd. for providing valuable inputs regarding extraction methodology of gamma oryzanol concentrate from rice bran oil.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest among the authors.

Human and animal rights statement

The authors declare that this article does not contain any studies related to human and animal subjects.


  1. 1.
    M.J. Redmond, D.A. Fielder, Extraction and purification method for cereal beta-glucan. US Patent 012149, A1 (2006)Google Scholar
  2. 2.
    A. Lazaridou, C.G. Biliaderis, M.S. Izydorczyk, in Functional Food Carbohydrates, ed. by C.G. By, M.S. Biliaderis, Izydorczyk (CRC Press, Boca Raton, 2007), pp. 1–72Google Scholar
  3. 3.
    C.S. Brennan, E. Samyue, Int. J. Food Prop. 7, 647–657 (2004)CrossRefGoogle Scholar
  4. 4.
    C.S. Brennan, L.J. Cleary, J. Cereal Sci. 42, 1–13 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Lee, C.J. Carriere, G.E. Inglett, Cereal Chem. 41, 637–642 (2004)CrossRefGoogle Scholar
  6. 6.
    S.A. Alam, Effects of extrusion process variables on the physical properties of oat-containing extrudates. University of Helsinki, VTT Technical Research Centre of Finland (2012)Google Scholar
  7. 7.
    Y. Liu, F. Hsieh, H. Heymann, H.E. Huff, J. Food Sci. 65, 1253–1259 (2000)CrossRefGoogle Scholar
  8. 8.
    C.S. Brennan, L.J. Cleary, Food Res. Int. 40, 291–296 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Brennan, Effects of β-glucan Fractions from Barley on Structure, Texture, Sensory Characteristics and Nutritional Value of Processed Cereal Foods (University of Plymouth, Devon, 2004)Google Scholar
  10. 10.
    M. Jenab, S.E. Rickard, L.J. Orcheson, L.U. Thompson, Nutr. Cancer 33, 154–158 (1999)CrossRefGoogle Scholar
  11. 11.
    J.D. Ford, L.B. Davin, N.G. Lewis, Basic Life Sci. 66, 675–694 (1999)PubMedGoogle Scholar
  12. 12.
    D.C. Ayres, J.D. Loike, Lignans: chemical, Biological and Clinical Properties (Chemistry and Pharmacology of Natural Products), 1st edn. (Cambridge University Press, Newyork, 1990), pp. 1–388Google Scholar
  13. 13.
    J.F. Carter, Cereal Foods World 38, 753–759 (1993)Google Scholar
  14. 14.
    O. Mentes, E. Bakkalbasi, R. Ercan, Food Sci. Technol. Int. 14, 299–306 (2008)CrossRefGoogle Scholar
  15. 15.
    H.K. Hyvarinen, J.M. Pihlava, J.A. Hiidenhovi, V. Hietaniemi, H.J.T. Korhonen, E.L. Ryhanen, J. Agric. Food Chem. 54, 48–53 (2006)CrossRefGoogle Scholar
  16. 16.
    M.J. O’Neil, A. Smith, P.E. Heckelman, J.R. Obenchain, J.A.R. Gallipeau, M.A. D’Arecca, The Merck Index: an Encyclopedia of Chemicals, Drugs, and Biologicals, 13th edn. (Merck and Co., Inc., New Jersey, 2001)Google Scholar
  17. 17.
    M. Patel, S.N. Naik, J. Sci. Ind. Res. 63, 569–578 (2004)Google Scholar
  18. 18.
    A.F.G. Cicero, A. Gaddi, Phytother. Res. 15, 277–289 (2001)CrossRefGoogle Scholar
  19. 19.
    P.K.P. Kumar, R.S. Manohar, A.R. Indiramma, A.G. Gopala, Krishna, J. Food Sci. Technol. 51(10), 2552–2559 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Temelli, J. Food Sci. 62, 1192–1201 (1997)CrossRefGoogle Scholar
  21. 21.
    C. Eliasson, A.K. Eldin, R. Andersson, P. Aman, J. Chromatogr. A 1012, 151–159 (2003)CrossRefGoogle Scholar
  22. 22.
    Association of Official Analytical Chemists. Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists, Washington DC, 2000)Google Scholar
  23. 23.
    Association of Official Analytical Chemists. Official Methods of Analysis, 14th edn. (Association of Official Analytical Chemists, Washington, DC, 1984)Google Scholar
  24. 24.
    B.V. McCleary, R. Codd, J. Sci. Food Agric. 55, 303–312 (1991)CrossRefGoogle Scholar
  25. 25.
    X. Li, J.P. Yuan, S.P. Xu, J.H. Wang, X. Liu, J. Chromatogr. A 1185(2), 223–232 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Azrina, I. Maznah, A.H. Azizah, ASEAN Food J. 15(1), 89–96 (2008)Google Scholar
  27. 27.
    S. Lue, F. Hsieh, H.E. Huff, Cereal Chem. 68, 227–234 (1991)Google Scholar
  28. 28.
    S. Mendonca, M.V.E. Grossmann, R. Verhe, LWT Food Sci. Technol. 33(1), 2–8 (2000)CrossRefGoogle Scholar
  29. 29.
    S. Heo, S. Jeon, S. Lee, LWT Food Sci. Technol. 55, 627–631 (2014)CrossRefGoogle Scholar
  30. 30.
    P. Kumar, S.G. Rudra, E. Varghese, C. Kaur, Vegetos 29(2), 1–6 (2016)Google Scholar
  31. 31.
    M.A. Bdour, G.J. Al-Rabadi, N.S. Al-Ameiri, A.Y. Mahadeen, M.H. Aaludatt, Jordan J. Biol. Sci. 7(3), 227–231 (2014)CrossRefGoogle Scholar
  32. 32.
    S.A. Wani, P. Kumar, J. Saudi Soc. Agric. Sci. (2018) CrossRefGoogle Scholar
  33. 33.
    S.A. Wani, P. Kumar, J. Food Meas. Charact. 10(3), 690–700 (2016)CrossRefGoogle Scholar
  34. 34.
    A.A. Zanwar, M.V. Hegde, S.L. Bodhankar, Food Sci. Hum. Wellness 2, 29–38 (2013)CrossRefGoogle Scholar
  35. 35.
    L.J. Symons, C.S. Brennan, J. Food Sci. 69, 257–261 (2004)CrossRefGoogle Scholar
  36. 36.
    J.E. Bakke, H.J. Klosterman, Proceedings of the North Dakota Academy of Science, Grand Forks, North Dak. 10, 18–22 (1956)Google Scholar
  37. 37.
    S. Sapino, M.E. Carlotti, R. Cavalli, E. Ugazio, G. Berlier, L. Gastaldi, S. Morel, J. Incl. Phenom. Macrocycl. Chem. 75, 69–76 (2013)CrossRefGoogle Scholar
  38. 38.
    R.F. Tester, J. Karkalas, X. QI, Worlds Poult. Sci. J. 60, 186–195 (2004)CrossRefGoogle Scholar
  39. 39.
    S. Hizukuri in Carbohydrates in Food, A.-C. By, Eliasson (eds.), 2nd edn. (CRC Press, Boca Raton, 1996), pp. 306–372Google Scholar
  40. 40.
    C.G. Biliaderis, G. Galloway, Carbohydr. Res. 189, 31–48 (1989)CrossRefGoogle Scholar
  41. 41.
    Y. Gat, L. Ananthanarayan, J. Food Sci. Technol. 52(5), 2634–2645 (2015)CrossRefGoogle Scholar
  42. 42.
    L. de C. Oliveira, J.H.T. Barros, C.M. Rosell, C. J. Steel Starch 69, 9–10 (2017)Google Scholar
  43. 43.
    G.F. Fanta, F.C. Felker, R.L. Shogren, Carbohydr. Polym. 48, 161–170 (2002)CrossRefGoogle Scholar
  44. 44.
    R. Saiah, P.A. Sreekumar, N. Leblanc, M. Castandet, J.-M. Saiter, Cereal Chem. 84(3), 276–281 (2007)CrossRefGoogle Scholar
  45. 45.
    M.A. Brennan, E. Derbyshire, B.K. Tiwari, C.S. Brennan, Int. J. Food Sci. Technol. 48(5), 893–902 (2013)CrossRefGoogle Scholar
  46. 46.
    D. Manno, E. Filippo, A. Serra, C. Negro, L. De Bellis, A. Miceli, Int. J. Food Sci. Technol. 44, 2218–2224 (2009)CrossRefGoogle Scholar
  47. 47.
    N. Aravind, M.J. Sissons, C.M. Fellows, J. Blazek, E.P. Gilbert, Food Chem. 132, 993–1002 (2012)CrossRefGoogle Scholar
  48. 48.
    C. Konstantinos, K.C. Tsokolar-Tsikopoulos, I.D. Katsavou, M. K.Krokida, J. Food Sci. Technol. 52(10), 6170–6181 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jasmeet Kour
    • 1
  • Sukhcharn Singh
    • 1
  • Dharmesh Chandra Saxena
    • 1
  1. 1.Department of Food Engineering and TechnologySant Longowal Institute of Engineering and TechnologySangrurIndia

Personalised recommendations