Advertisement

High-pressure CO2 extraction of bioactive compounds of barberry fruit (Berberis vulgaris): process optimization and compounds characterization

  • Akram SharifiEmail author
  • Mehrdad Niakousari
  • Seyed Ali Mortazavi
  • Amir Hossein Elhamirad
Original Paper
  • 33 Downloads

Abstract

A high-pressure carbon dioxide technique was optimized by employing of response surface methodology. A quadratic model was used to predict process behavior. According to results, the extraction time (20–60 min) and pressure (100–200 bars) had statistically significant effects on anthocyanin, total phenolic, ascorbic acid contents and antioxidant activity of barberry fruit extracts. The maximum yields of anthocyanins, phenolic compounds, and vitamin C were 178.658 mg/L, 329.815 mg GAE/100 mL, and 3468.7 mg/L, respectively. Antioxidant activity of about 84% was also achieved. The optimum extraction pressure and time were defined as 200 bars and 44.64 min, respectively. Experimental values for various responses at the optimum conditions matched with the predicted values. High-performance liquid chromatography revealed the presence of six different types of anthocyanins, namely cyaniding-3,5-diglucoside, delphinidin-3,5-diglucoside, delphinidin-3-glucoside, pelargonidin-3,5-diglucoside, cyanidin-3-glucoside, and pelargonidin-3-glucoside in the samples. Response surface methodology was employed successfully to optimize the extraction conditions of barberry fruit bioactive compounds.

Keywords

Anthocyanins Antioxidant activity Ascorbic acid High-pressure carbon dioxide Phenolic content 

Notes

Acknowledgements

We have to express our appreciation to the Late Dr. Abdolmajid Maskooki for sharing their pearls of wisdom with us during this research. His work ethic and dedication to science were unparalleled. This work is dedicated to him. We are also immensely grateful to Dr. Honarvar and Mr. Vatan Ara of Dorsa Tech Company for provision and assistance on the HPCD equipment.

References

  1. 1.
    S. Berenji Ardestani, M.A. Sahari, M. Barzegar, J. Food Process. Preserv. 40(6), 1407–1420 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Hassani, A. Sharifi, A. Mohammadi Sani, B. Hassani, J. Food Saf. 36, 503–507 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Mushtaq, B. Sultana, S. Akram, F. Anwar, A. Adnan, S.S.H. Rizvi, Anal. Bioanal. Chem. 409(14), 3645–3655 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Mushtaq, B. Sultana, F. Anwar, A. Adnan, S.S.H. Rizvi, J. Supercrit. Fluids 104, 122–131 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Herrero, b Mendiol, A. Jose, A. Cifuentes, E.I. Neza, J. Chromatogr. A. 1217(16), 2495–2511 (2010)CrossRefGoogle Scholar
  6. 6.
    X. Zhenzhen, W. Jihong, Y. Zhang, H. Xiaosong, L. Xiaojun, W. Zhengfu, Bioresour. Technol. 101, 7151–7157 (2010)CrossRefGoogle Scholar
  7. 7.
    L. Zhou, Y. Wang, X. Hu, J. Wu, X. Liao, Innov. Food Sci. Emerg. Technol. 10(3), 321–327 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Fabroni, M. Amenta, N. Timpanaro, P. Rapisarda, Innov. Food Sci. Emerg. Technol. 11, 477–484 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Del Pozo-Insfran, M.O. Balaban, S.T. Talcott, J. Agri. Food Chem. 54, 6705–6712 (2006)CrossRefGoogle Scholar
  10. 10.
    B.K. Tiwari, C.P. O’Donnell, P.J. Cullen, Trends Food Sci. Technol. 20, 137–145 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Galvez, K. Di Scala, K. Rodriguez, R.L. Mondaca, M. Miranda, J. Lopez, M. Perez-Wan, Food Chem. 117, 647–653 (2007)CrossRefGoogle Scholar
  12. 12.
    I. Saba, F. Anwar, J. Essent. Oil Bear. Plants 21(2), 400–419 (2018)CrossRefGoogle Scholar
  13. 13.
    T. Fuleki, F.J. Francis, J. Food Sci. 33, 78–83 (1968)CrossRefGoogle Scholar
  14. 14.
    M.I. Gil, F.A. Tomas-Barberan, B. Hess-Pierce, D.M. Holcroft, A.A. Kader, J. Agric. Food Chem. 48(10), 4581–4589 (2000)CrossRefGoogle Scholar
  15. 15.
    A.J. Melendez, E. Bejines, I.M. Vicario, F.J. Heredia, Ital. J. Food Sci. 1(16), 79 (2004)Google Scholar
  16. 16.
    M. Noshad, M. Mohebbi, F. Shahidi, S.A. Mortazavi, Food Bioprocess Technol. 5(6), 1–13 (2011)Google Scholar
  17. 17.
    N.K. Satam, L.S. Parab, A.M. Bhagwat, S.I. Bhoir, Int. J. Biol. Pharm. Res. 3(8), 990–995 (2012)Google Scholar
  18. 18.
    G. Spigno, D.M. Faveri, J. Food Eng. 78, 793–801 (2007)CrossRefGoogle Scholar
  19. 19.
    I.H. Adil, M.E. Yener, A. Bayindirli, Sep. Sci.Technol. 43, 1091–1111 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Naeem, M. Ali, M. Asif, Pak. J. Pharm. Sci. 25(3), 535–541 (2012)Google Scholar
  21. 21.
    M. Corrales, A. García, P. Butz, B. Tauscher, J. Food Eng. 90, 415–421 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Bucic-Kojic, M. Planinic, S. Tomas, S. Jokic, I. Mujic, M. Bilic, D. Velic, Pol. J. Food Nutr. Sci. 61(3), 195–199 (2011)Google Scholar
  23. 23.
    Y. Cai, Q. Luo, M. Sun, H. Corke, Life Sci. 74, 2157–2184 (2004)CrossRefGoogle Scholar
  24. 24.
    A. Kumaran, J. Karunakaran, LWT-Food Sci. Technol. 40, 344–352 (2006)CrossRefGoogle Scholar
  25. 25.
    I.T. Agar, R. Massantini, B. Hess-Pierce, A.A. Kader, J. Food Sci. 64, 433–440 (1999)CrossRefGoogle Scholar
  26. 26.
    V. Simunic, S.O. Kovac, D. sokac, W. pfannhauser, M. Murkovic, Eur Food Res. Technol 220(5), 575–578 (2005)CrossRefGoogle Scholar
  27. 27.
    E.A. Puzmino–Duran, M.M.E. Giusti, R. Wrolstand, M. Beatriza, Food Chem. 73, 327–332 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Technology, Faculty of Industrial and Mechanical Engineering, Qazvin BranchIslamic Azad UniversityQazvinIran
  2. 2.Food Science and Technology DepartmentShiraz UniversityShirazIran
  3. 3.Department of Food Science & Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
  4. 4.Department of Food Science & Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran

Personalised recommendations