Advertisement

Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology

  • Maira Casagrande
  • Juliano Zanela
  • Daiane Pereira
  • Vanderlei Aparecido de Lima
  • Tatiane Luiza Cadorin Oldoni
  • Solange Teresinha CarpesEmail author
Original Paper
  • 116 Downloads

Abstract

The extraction of phenolic compounds with antioxidant activity (AA) of winemaking by-products using response surface methodology and fractional factorial design was investigated. The effects of grape pomace from wine (GWP) and juice production (GJP), temperature, solvent type and time on the extraction of total phenolic compounds (TPC) and AA were evaluated. The TPC and AA varied from 17.91 to 35.10 mg (GAE) g−1 (gallic acid equivalent) and from 65.12 to 149.27 µmol Trolox g−1 of pomace, respectively. For both by-products the optimization suggest that solvent acetone at 60 °C was the best condition. However, the best time for GJP and GWP were 15 min and 45 min, respectively. Gallic acid was the major phenolic compound identified by liquid chromatography in the GJP, followed by coumaric acid, ferulic acid, trans-resveratrol and caffeic acid. The content of anthocyanins for GWP and GJP varied from 640 to 780 mg cyanidin g−1. The responses of the factorial design showed that the GJP had the highest content of TPC and AA when compared to the GWP. Despite superiority of the GJP, these finding supporting the utilization of both grape pomace in food industry due to their high amount of bioactive compounds.

Keywords

Trans-resveratrol Antioxidant activity Fractional factorial design Vittis labrusca L. Agro-industrial by-products 

Notes

Acknowledgements

The authors are grateful to Brazilian National Research Council, Coordination for the Improvement of Higher Level Personnel (CAPES) and Araucaria Research Foundation for the scholarships.

References

  1. 1.
    N. Torres, N. Goicoechea, M.C. Antolín, Ind. Crop. Prod. 76, 77–85 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Teixeira, J. Eiras-Dias, S.D. Castellarin, H. Gerós, Int. J. Mol. Sci. 14, 18711–18739 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Anastasiadi, H. Pratsinis, D. Kletsas, A. Skaltsounis, S.A. Haroutounian, LWT Food Sci. Technol. 48, 316–322 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Dong, Q. Zhang, L. Li, J. Liu, L. Shen, H. Li, W. Qin, Ind. Crop. Prod. 76, 290–297 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Sang, I. Yang, B. Buckley, C.-T. Ho, C.S. Yang, Free Radic. Biol. Med. 43, 362–371 (2007)CrossRefGoogle Scholar
  6. 6.
    E. Karacabey, G. Mazza, Food Chem. 119, 343–348 (2010)CrossRefGoogle Scholar
  7. 7.
    N. Balasundram, K. Sundram, S. Samman, Food Chem. 99, 191–203 (2006)CrossRefGoogle Scholar
  8. 8.
    P. Rondeau, F. Gambier, F. Jolibert, N. Brosse, Ind. Crop. Prod. 43, 251–254 (2013)CrossRefGoogle Scholar
  9. 9.
    C.M. Peixoto, M.I. Dias, M.J. Alves, R.C. Calhelha, L. Barros, S.P. Pinho, I.C.F.R. Ferreira, Food Chem. 253, 132–138 (2018)CrossRefGoogle Scholar
  10. 10.
    P.S. Melo, K.B. Bergamaschi, A.P. Tiveron, A.P. Massarioli, T.L.C. Oldoni, M.C. Zanus, G.E. Pereira, S.M. Alencar, Cienc. Rural 4, 1088–1093 (2011)CrossRefGoogle Scholar
  11. 11.
    G.M.D. Santos, G.A. Maia, P.H.M.D.S. Sousa, J.M.C.D. Costa, R.W.D. Figueiredo, G.M.D. Prado, Arch. Latinoam. Nutr. 58, 185–192 (2008)Google Scholar
  12. 12.
    K.A. Arbos, R.J.S. Freitas, S.C. Stertz, M.F. Dornas, Food Sci. Technol. 30, 501–506 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Alberti, A.F. Zielinski, D.M. Zardo, I.M. Demiate, A. Nogueira, L.I. Mafra, Food Chem. 149, 151–158 (2014)CrossRefGoogle Scholar
  14. 14.
    A.C.D. Oliveira, I.B. Valentim, M.O.F. Goulart, C.A. Silva, E.J.H. Bechara, M.T.S. Trevisan, Quim. Nova 32, 689–702 (2009)CrossRefGoogle Scholar
  15. 15.
    F. Dahmoune, L. Boulekbache, K. Moussi, O. Aoun, G. Spigno, K. Madani, Ind. Crop. Prod. 50, 77–87 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Da Porto, E. Porretto, D. Decorti, Ultrason. Sonochem. 20, 1076–1080 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Fiori, V. Lavelli, K.S. Duba, P.S.C. Sri Harsha, H.B. Mohamed, G. Guella, J. Supercrit. Fluids 94, 71–80 (2014)CrossRefGoogle Scholar
  18. 18.
    M.B. Hossain, I. Aguiló-Aguayo, J.G. Lyng, N.P. Brunton, D.K. Rai,. Innov. Food Sci. Emerg. 29, 9–14 (2015)CrossRefGoogle Scholar
  19. 19.
    E. Puertolas, P. Hernandez-Orte, G. Saldana, I. Alvarez, J. Raso, Food Res. Int. 43, 761–766 (2010)CrossRefGoogle Scholar
  20. 20.
    C. Beres, G.N.S. Costa, I. Cabezudo, N.K. Silva-James, A.S.C. Teles, A.P.G. Cruz, C. Mellinger-Silva, R.V. Tonon, L.M.C. Cabral, S.P. Freitas, Waste Manag. 68, 581–594 (2017)CrossRefGoogle Scholar
  21. 21.
    Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.-H. Ju, J. Food Drug Anal. 22, 296–302 (2014)CrossRefGoogle Scholar
  22. 22.
    C.D. Stalikas, J. Sep. Sci. 30, 3268–3295 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Yilmaz, R.T. Toledo, J. Food Compos. Anal. 19, 41–48 (2006)CrossRefGoogle Scholar
  24. 24.
    D. Giaretta, A.V. Lima, C.A.P. Schmidt, S.T. Carpes, LWT Food Sci. Technol. 64, 1209–1216 (2015)CrossRefGoogle Scholar
  25. 25.
    Q. Xu, Y.Y. Shen, H.F. Wang, N.P. Zhang, S.H. Xu, L. Zhang, Food Chem. 138, 2122–2129 (2013)CrossRefGoogle Scholar
  26. 26.
    H.-Z. Li, Z.-J. Zhang, T.-Y. Hou, X.-J. Li, T. Chen, Ind. Crop. Prod. 76, 18–24 (2015)CrossRefGoogle Scholar
  27. 27.
    N. De Zordi, A. Cortesi, I. Kikic, M. Moneghini, D. Solinas, G. Innocenti, A. Portolan, G. Baratto, S. Dall’Acqua, J. Supercrit. Fluids 95, 491–498 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, L. Kong, C. Yin, J. Jiang, J. He, W. Xiao, LWT Food Sci. Technol. 51, 343–347 (2013)CrossRefGoogle Scholar
  29. 29.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Method Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  30. 30.
    Y.K. Park, M.H. Koo, H.H. Sato, J.L. Contado, Arch. Biol. Technol. 38, 1235–1259 (1995)Google Scholar
  31. 31.
    J. Lee, R.W.R. Durst, E. Wrolstad, J. AOAC Int. 88, 1269–1278 (2005)Google Scholar
  32. 32.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  33. 33.
    S.T. Carpes, S.M. Alencar, I.S.R. Cabral, T.L.C. Oldoni, G.B. Mourão, C.W.I. Haminiuk, C.F.P. Luz, M.L. Masson, CYTA J. Food 11, 150–161 (2013)CrossRefGoogle Scholar
  34. 34.
    R. Re, N. Pellegrini, A. Proteggemnte, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1234–1237 (1999)CrossRefGoogle Scholar
  35. 35.
    M. Ahn, S. Kumazawa, T. Hamasaka, K. Bang, T. Nakayama, J. Agric. Food Chem. 52, 7286–7292 (2004)CrossRefGoogle Scholar
  36. 36.
    R. Pulido, L. Bravo, F. Saura-Calixto, J. Agric. Food Chem. 46, 3396–3402 (2000)CrossRefGoogle Scholar
  37. 37.
    Ø Hammer, D.A.T. Harper, P.D. Ryan, Palaeontol. Electron. 4, 1–9 (2001)Google Scholar
  38. 38.
    N. Turkmen, F. Sari, Y.S. Velioglu, Food Chem. 99, 835–841 (2006)CrossRefGoogle Scholar
  39. 39.
    M. Bachir Bey, L. Meziant, Y. Benchikh, H. Louaileche, Food Chem. 162, 277–282 (2014)CrossRefGoogle Scholar
  40. 40.
    C.B. Cataneo, V. Caliari, L.V. Gonzaga, E.M. Kuskoski, R. Fett, Semin. Cienc. Agrar. 29, 93–102 (2008)CrossRefGoogle Scholar
  41. 41.
    G.M. Pasinetti, J. Wang, L. Ho, W. Zhao, L. Dubner, Biochim. Biophys. Acta 1852, 1202–1208 (2015)CrossRefGoogle Scholar
  42. 42.
    P.R. Poudel, H. Tamura, I. Kataoka, R. Mochioka, J. Food Compos. Anal. 21, 622–625 (2008)CrossRefGoogle Scholar
  43. 43.
    V. Katalinić, S.S. Možina, D. Skroza, I. Generalić, H. Abramovič, M. Miloš, I. Ljubenkov, S. Piskernik, I. Pezo, P. Terpinc, M. Boban, Food Chem. 119, 715–723 (2010)CrossRefGoogle Scholar
  44. 44.
    L. Ho, G.M. Pasinetti, Expert Rev. Proteom. 7, 579–589 (2010)CrossRefGoogle Scholar
  45. 45.
    A. Babazadeh, A. Taghvimi, H. Hamishehkar, M. Tabibiazar, Food Biosci. 20, 36–42 (2017)CrossRefGoogle Scholar
  46. 46.
    D. Granato, F.C.U. Katayama, I.A. Castro, LWT Food Sci. Technol. 43, 1542–1549 (2010)CrossRefGoogle Scholar
  47. 47.
    R. Apak, S. Gorinstein, V. Böhm, K.M. Schaich, M. Özyürek, K. Güçlü, Pure Appl. Chem. 85, 957–998 (2013)CrossRefGoogle Scholar
  48. 48.
    K.L. Berker, B. Demirata, R. Apak, Food Anal. Methods 5, 1150–1158 (2013)CrossRefGoogle Scholar
  49. 49.
    J. Pérez-Jiménez, S. Arranz, M. Tabernero, M.E. Díaz-Rubio, J. Serrano, I. Goñi, Food Res. Int. 41, 274–285 (2008)CrossRefGoogle Scholar
  50. 50.
    L.M.A.S. Campos, F.V. Leimann, R.C. Pedrosa, S.R.S. Ferreira, Bioresour. Technol. 99, 8413–8420 (2008)CrossRefGoogle Scholar
  51. 51.
    K. Dwyer, F. Hosseinian, M. Rod, J. Food Res. 3, 1–16 (2014)CrossRefGoogle Scholar
  52. 52.
    J.-K. Moon, T. Shibamoto, J. Agric. Food Chem. 57, 1655–1666 (2009)CrossRefGoogle Scholar
  53. 53.
    J. Yu, M. Ahmedna, Int. J. Food Sci. Technol. 48, 221–237 (2013)CrossRefGoogle Scholar
  54. 54.
    A. Nogueira, S. Guyot, N. Marnet, J.M. Lequéré, J.F. Drilleau, G. Wosiacki, Braz. Arch. Biol. Technol. 51, 1025–1032 (2008)CrossRefGoogle Scholar
  55. 55.
    C.K. Sautter, S. Denardin, A.O. Alves, C.A. Mallmann, N.G. Penna, L.H. Hecktheuer, Cienc. Tecnol. Alim. 25, 437–442 (2005)CrossRefGoogle Scholar
  56. 56.
    E. Gomez-Plaza, A. Minano, J.M. Lopez-Roca, Food Chem. 97, 87–94 (2006)CrossRefGoogle Scholar
  57. 57.
    O.M.P. Rivera, A.B. Moldes, A.M. Torrado, J.M. Dominguez, Process Biochem. 42, 1010–1020 (2007)CrossRefGoogle Scholar
  58. 58.
    J.L. Frestedt, Food Control and Biosecurity, 1st edn. (Elsevier, London, 2018), pp. 543–565CrossRefGoogle Scholar
  59. 59.
    A.S. Ferreira, C. Nunes, A. Castro, P. Ferreira, M.A. Coimbra, Carbohydr. Polym. 113, 490–499 (2014)CrossRefGoogle Scholar
  60. 60.
    M. Soto, E. Falqué, H. Domínguez, Cosmetics 2, 259–276 (2015)CrossRefGoogle Scholar
  61. 61.
    A. Rózek, I. Achaerandio, C. Güell, F. López, M. Ferrando, LWT Food Sci. Technol. 43, 623–631 (2010)CrossRefGoogle Scholar
  62. 62.
    M.D. Garrido, M. Auqui, N. Martí, M.B. Linares, LWT Food Sci. Technol. 44, 2238–2243 (2011)CrossRefGoogle Scholar
  63. 63.
    C. Guerra-Rivas, C. Vieira, B. Rubio, B. Martínez, B. Gallardo, A.R. Mantecón, P. Lavín, T. Manso, Meat Sci. 116, 221–229 (2016)CrossRefGoogle Scholar
  64. 64.
    L.D. Shirahigue, M.V. Plata-Oviedo, S.M. Alencar, M.A.B.R. D’Arce, T.M.F.S. Vieira, T.L.C. Oldoni, Int. J. Food Sci. Technol. 45, 863–870 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryFederal University of Technology – Paraná (UTFPR)Pato BrancoBrazil
  2. 2.Pato BrancoBrazil

Personalised recommendations