Advertisement

A novel combination of methods for the extraction and purification of arabinoxylan from byproducts of the cereal industry

  • Cassie Anderson
  • Senay SimsekEmail author
Original Paper
  • 21 Downloads

Abstract

Chemical characterization of arabinoxylan extracted using a novel combination of alkali extraction and purification methods provides insight into the effectiveness of this novel combination of methods. Arabinoxylan was extracted from three byproducts of the cereal industry: wheat (Triticum aestivum L.) bran, maize (Zea mays L.) bran, and dried distillers grain. The proximate composition, sugar profile, molecular weight, polydispersity index, and linkages were determined for all three types of arabinoxylan. The purities of the extracted arabinoxylan were as follows: 730 g kg−1 for wheat bran arabinoxylan, 850 g kg−1 for maize bran arabinoxylan, and 580 g kg−1 for dried distillers grain arabinoxylan. The arabinose to xylose ratio for all arabinoxylan extracts was 0.51. The maize bran arabinoxylan had the highest MW (7700333), and the dried distillers grain arabinoxylan had the lowest MW (5900000). The purity of the arabinoxylan obtained in this experiment is a clear indication of the effectiveness of the novel combination of alkali extraction and purification methods developed in this study.

Keywords

Arabinoxylan Alkaline extraction Wheat bran Maize bran Dried distillers grain NMR 

Notes

Acknowledgements

We would like to thank Kristin Whitney for her assistance with the analyses performed in this experiment as well as her valuable input. We would also like to thank Dr. Jae-Boom Ohm for his assistance with the statistical analysis of the data.

References

  1. 1.
    S.L. Heikkinen, K.S. Mikkonen, K. Pirkkalainen, R. Serimaa, C. Joly, M. Tenkanen, Carbohydr. Polym. 92, 733 (2013)CrossRefGoogle Scholar
  2. 2.
    J.A. Delcour, R.C. Hoseney, in Principles of Cereal Science and Technology, ed. by J.A. By, R.C. Delcour, Hoseney (AACC International Inc., St. Paul, MN, 2010), pp. 1–22CrossRefGoogle Scholar
  3. 3.
    L. Saulnier, P.-E. Sado, G. Branlard, G. Charmet, F. Guillon, J. Cereal Sci. 46, 261 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Apprich, Ö Tirpanalan, J. Hell, M. Reisinger, S. Böhmdorfer, S. Siebenhandl-Ehn, S. Novalin, W. Kneifel, LWT Food Sci. Technol. 56, 222 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Swennen, C.M. Courtin, G.C.J.E. Lindemans, J.A. Delcour, J. Sci. Food Agric. 86, 1722 (2006)CrossRefGoogle Scholar
  6. 6.
    C. Maes, J.A. Delcour, J. Cereal Sci. 35, 315 (2002)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, L. Pitkänen, J. Douglade, M. Tenkanen, C. Remond, C. Joly, Carbohydr. Polym. 86, 852 (2011)CrossRefGoogle Scholar
  8. 8.
    J. Agger, A. Vikso-Nielsen, A.S. Meyer, J. Agric. Food Chem. 58, 6141 (2010)CrossRefGoogle Scholar
  9. 9.
    E. Carvajal-Millan, A. Rascón-Chu, J.A. Márquez-Escalante, V. Micard, N.P. León, A. Gardea, Carbohydr. Polym. 69, 280 (2007)CrossRefGoogle Scholar
  10. 10.
    N. Zarrinbakhsh, A.K. Mohanty, M. Misra, Biomass Bioenergy 55, 251 (2013)CrossRefGoogle Scholar
  11. 11.
    U.S. Grains Council, ed. by U.S. Grains Council (U.S. Grains Council, Washington DC, 2012), pp. 17–26Google Scholar
  12. 12.
    Z. Xiang, J. Watson, Y. Tobimatsu, T. Runge, Ind. Crops Prod. 59, 282 (2014)CrossRefGoogle Scholar
  13. 13.
    J.N. BeMiller, in Carbohydrate Chemistry for Food Scientists, ed. by J.N. By, BeMiller (AACC International Inc., St. Paul, MN, 2007), pp. 1–24Google Scholar
  14. 14.
    F. Saeed, I. Pasha, F.M. Anjum, M.T. Sultan, Food Sci. Nutr. 51, 467 (2011)Google Scholar
  15. 15.
    Z. Zhang, C. Smith, W. Li, Food Res. Int. 65, 423 (2014)CrossRefGoogle Scholar
  16. 16.
    S.F. Reis, E. Coelho, M.A. Coimbra, N. Abu-Ghannam, Ultrason. Sonochem. 24, 155 (2015)CrossRefGoogle Scholar
  17. 17.
    A.M. Kiszonas, E.P. Fuerst, C.F. Morris, Cereal Biomacromol. 90, 387 (2013)Google Scholar
  18. 18.
    AACCI, Approved Methods of Analysis, 11th edn. Method 55-60.01 Guideline for determination of particle size distribution (AACC International Inc., St. Paul, MN, October 2011)Google Scholar
  19. 19.
    AACC International, Approved Methods of Analysis, 11th edn. Method 44-15.02 Moisture-air oven methods (AACC International Inc., St. Paul, MN, November 3, 1999)Google Scholar
  20. 20.
    AACCI, Approved Methods of Analysis, 11th edn. Method 08-01.01 Ash-basic method (AACC International, Inc., St. Paul, MN, November 3, 1999)Google Scholar
  21. 21.
    AACC International, Approved Methods of Analysis, 11th edn. Method 46-30.01 Crude protein-combustion method (AACC International Inc., St. Paul, MN, November 3, 1999)Google Scholar
  22. 22.
    AOCS, Official Methods and Recommended Practices of the AOCS, Method Ba 3-38 Oil content (AOCS, Urbana, IL, 2009)Google Scholar
  23. 23.
    AACCI, Approved Methods of Analysis, 11th edn. Method 76-13.01 Total starch assay procedure (Megazyme amyloglucosidase/alpha-amylase method) (AACC International Inc., St. Paul, MN, November 3, 1999)Google Scholar
  24. 24.
    A.B. Blankeney, P.J. Harris, R.J. Henry, B.A. Stone, Carbohydr. Res. 113, 291 (1983)CrossRefGoogle Scholar
  25. 25.
    M. Mendis, S. Simsek, Carbohydr. Polym. 132, 452 (2015)CrossRefGoogle Scholar
  26. 26.
    Wyatt Technology, Astra Software, Version 6.0.5 (Wyatt Technology, Santa Barbra, CA, 2016)Google Scholar
  27. 27.
    G. Dervilly, L. Saulnier, P. Roger, J.-F. Thibault, J. Agric. Food Chem. 48, 270 (2000)CrossRefGoogle Scholar
  28. 28.
    Bruker BioSpin Corporation, TopSpin (Bruker BioSpin Corporation, Billerica, MA, 2015)Google Scholar
  29. 29.
    SAS Institute Inc, SAS Software (SAS Institute Inc., Cary, NC, 2011)Google Scholar
  30. 30.
    L.C. Haynes, A.D. Bettge, L. Slade, AACC Int. Rep. 54, 174 (2010)Google Scholar
  31. 31.
    M. Ramšak, J. Ravnik, M. Zadravec, M. Hriberšek, J. Iljaž, Eng. Anal. Bound. Elem. 77, 145 (2017)CrossRefGoogle Scholar
  32. 32.
    M.S. Kale, D.A. Pai, B.R. Hamaker, O.H. Campanella, J. Cereal Sci. 52, 368 (2010)CrossRefGoogle Scholar
  33. 33.
    P. Zhang, R.L. Whistler, J. Appl. Polym. Sci. 93, 2896 (2004)CrossRefGoogle Scholar
  34. 34.
    M. Aguedo, C. Fougnies, M. Dermience, A. Richel, Carbohydr. Polym. 105, 317 (2014)CrossRefGoogle Scholar
  35. 35.
    M. Rogosic, H.J. Mencer, Z. Gomzi, Eur. Polym. J. 32, 1337 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations