Advertisement

Evolutionary Biology

, Volume 46, Issue 4, pp 317–331 | Cite as

The Shape of Weaver: Investigating Shape Disparity in Orb-Weaving Spiders (Araneae, Araneidae) Using Geometric Morphometrics

  • Robert J. KallalEmail author
  • Andrew J. Moore
  • Gustavo Hormiga
Research Article

Abstract

Sexual size dimorphism in orb-weaving spiders is a relatively well-studied phenomenon, and numerous works have documented evolutionary variation in interspecific size and degree of dimorphism. To date, these studies have been largely limited to assessing the evolution of a single or few linear measurements correlated with body size. While the descriptive and comparative literature is rich with qualitative and linear comparisons that distinguish the sexes and characterize species, the extent to which interspecific or dimorphic variation in size correlates with morphological shape remains relatively unexplored. The carapace of spiders is generally conserved in shape, especially among members of the same family, but is neither well-characterized as a potential facet of spider sexual dimorphism nor as a variable structure overall. Here, we use geometric morphometric techniques to quantify differences in carapace shape among members of the family Araneidae and test for allometric influences on interspecific and dimorphic shape differences across orb-weavers. We show that females and males differ in shape, occupying overlapping but distinct areas of morphospace, with males having more piriform carapaces than females. Araneid spider subfamilies overlap substantially in morphospace, though interspecific differences in shape are generally greater than those distinguishing males and females of a species. Furthermore, we show that female carapace shape shows phylogenetic signal and is more conserved than is male shape. Carapace shape differences made evident from canonical variates analysis are congruent with the more mobile lifestyle adopted by males, as a broader carapace may support more robust leg musculature.

Keywords

Araneoidea Carapace shape Comparative biology Shape dimorphism Size dimorphism 

Notes

Acknowledgements

We thank Matthias Foellmer and an anonymous reviewer for comments improving this manuscript. We thank Emma Sherratt, Mike Collyer, and Paul O’Higgins for their advice and guidance on data interpretation and analysis. We thank Thomas Guillerme for guidance using dispRity. We thank Hannah Wood and Tom Nguyen for loans from the Smithsonian Institution. We thank Joshua Storch, Josef Stiegler, and Alex Pyron for input in project ideation and analysis. This work was supported by US National Science Foundation grants DEB 1457300 and 1457539.

Funding

US National Science Foundation grants DEB 1457300 and 1457539 to Gustavo Hormiga and Gonzalo Giribet.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11692_2019_9482_MOESM1_ESM.xlsx (21 kb)
Supplementary material 1 Suppl. Data File S1. Taxon names, localities, institutional codes, and remarks. (XLSX 21 kb)
11692_2019_9482_MOESM2_ESM.rar (55 kb)
Supplementary material 2 Suppl. Data File S2. Coordinate data for 106 araneid carapaces. (RAR 54 kb)
11692_2019_9482_MOESM3_ESM.rmd (22 kb)
Supplementary material 3 Suppl. Data File S3. R markdown file. (RMD 21 kb)

References

  1. Abouheif, E., & Fairbairn, D. J. (1997). A comparative analysis of allometry for sexual size dimorphism: Assessing Rensch’s rule. The American Naturalist, 149, 540–562.CrossRefGoogle Scholar
  2. Adams, D.C., Collyer, M., & Kaliontzopoulou, A. (2018). Geomorph: Software for geometric morphometric analysis. R package version 3.0.6. https://cran.r-project.org/package=geomorph.
  3. Adams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393–399.  https://doi.org/10.1111/2041-210X.12035.CrossRefGoogle Scholar
  4. Blomberg, S. P., Garland, T., Jr., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.CrossRefGoogle Scholar
  5. Bond, J. E., & Beamer, D. A. (2006). A morphometric analysis of mygalomorph spider carapace shape and its efficacy as a phylogenetic character. Invertebrate Systematics, 20, 1–7.CrossRefGoogle Scholar
  6. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. New York: Cambridge University Press.Google Scholar
  7. Brandt, Y., & Andrade, M. C. B. (2007a). Testing the gravity hypothesis of sexual size dimorphism: Are small males faster climbers? Functional Ecology, 21, 379–385.  https://doi.org/10.1111/j.1365-2435.2007.01243.x.CrossRefGoogle Scholar
  8. Brandt, Y., & Andrade, M. C. B. (2007). What is the matter with the gravity hypothesis? Functional Ecology, 21, 1182–1183.  https://doi.org/10.1111/j.1365-2435.2007.01345.x.CrossRefGoogle Scholar
  9. Cardini, A. (2016). Lost in the other half: Improving accuracy in geometric morphometric analyses of one side of bilaterally symmetric structures. Systematic Biology, 65, 1096–1106.  https://doi.org/10.1093/sysbio/syw043.CrossRefPubMedGoogle Scholar
  10. Cardini, A. (2017). Left, right, or both? Estimating and improving accuracy of one-side-only geometric morphometric analyses of cranial variation. Journal of Zoological Systematics and Evolutionary Research, 55, 1–10.  https://doi.org/10.1111/jzs.12144.CrossRefGoogle Scholar
  11. Costa-Schmidt, L. E., & de Araujo, A. M. (2010). Genitalic variation and taxonomic discrimination in the semi-aquatic spider genus Paratrechalea (Araneae: Trechaleidae). Journal of Arachnology, 38, 242–249.CrossRefGoogle Scholar
  12. Cheng, R. C., & Kuntner, M. (2014). Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders. Evolution, 68(10), 2861–2872.  https://doi.org/10.1111/evo.12504.CrossRefPubMedGoogle Scholar
  13. Cheng, R. C., & Kuntner, M. (2015). Disentangling the size and shape components of sexual dimorphism. Journal of Evolutionary Biology, 42, 223–234.  https://doi.org/10.1007/s11692-015-9313-z.CrossRefGoogle Scholar
  14. Coddington, J. A. (1986). The genera of the spider family Theridiosomatidae. Smithsonian Contributions to Zoology, 4422, 1–96.CrossRefGoogle Scholar
  15. Collyer, M. L., & Adams, D. C. (2018). RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods in Ecology and Evolution, 9, 1772–1779.  https://doi.org/10.1111/2041-210X.13029.CrossRefGoogle Scholar
  16. Collyer, M. L., Sekora, D. J., & Adams, D. C. (2015). A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity, 115, 357–365.  https://doi.org/10.1038/hdy.2014.75.CrossRefPubMedGoogle Scholar
  17. Corcobado, G., Rodríguez-Gironés, M. A., De Mas, E., & Moya-Laraño, J. (2010). Introducing the refined gravity hypothesis of extreme sexual size dimorphism. BMC Evolutionary Biology, 10, 236.  https://doi.org/10.1186/1471-2148-10-236.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Crews, S. C. (2009). Assessment of rampant genitalic variation in the spider genus Homalonychus (Araneae, Homalonychidae). Invertebrate Biology, 128, 107–125.CrossRefGoogle Scholar
  19. Darwin, C. (1871). Sexual selection and the descent of man. London: Murray.CrossRefGoogle Scholar
  20. De Mas, E., Ribera, C., & Moya-Laraño, J. (2009). Resurrecting the differential mortality model of sexual size dimorphism. Journal of Evolutionary Biology, 22, 1739–1749.  https://doi.org/10.1111/j.1420-9101.2009.01786.x.CrossRefPubMedGoogle Scholar
  21. Dimitrov, D., Benavides, L. R., Arnedo, M. A., Giribet, G., Griswold, C. E., Scharff, N., et al. (2017). Rounding up the usual suspects: A standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). Cladistics, 33, 221–250.  https://doi.org/10.1111/cla.12165.CrossRefGoogle Scholar
  22. Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. The American Naturalist, 175, 289–301.  https://doi.org/10.1086/650372.CrossRefPubMedGoogle Scholar
  23. Eberhard, W. G., Huber, B. A., Rodriguez-S, R. L., Briceño, R. D., Salas, I., & Rodriguez, V. (1998). One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution, 52, 415–431.  https://doi.org/10.1111/j.1558-5646.1998.tb01642.x.CrossRefPubMedGoogle Scholar
  24. Elgar, M. A. (1998). Sperm competition and sexual selection in spiders and other arachnids. In T. R. Birkhead & A. P. Møller (Eds.), Sperm competition and sexual selection (pp. 3073–3140). London: Academic Press.Google Scholar
  25. Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.CrossRefGoogle Scholar
  26. Fernández-Montraveta, C., & Marugán-Lobón, J. (2017). Geometric morphometrics reveals sex-differential shape allometry in a spider. PeerJ, 5, e3617.  https://doi.org/10.7717/peerj.3617.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fernández, R., Kallal, R. J., Dimitrov, D., Ballesteros, J. A., Arnedo, M. A., Giribet, G., et al. (2018). Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology, 28, 2190–2193.  https://doi.org/10.1016/j.cub.2018.03.064.CrossRefPubMedGoogle Scholar
  28. Foelix, R. F. (2010). Biology of spiders (3rd ed.). New York: Oxford University Press.Google Scholar
  29. Foellmer, M. W., & Fairbairn, D. J. (2005). Selection on male size, leg length and condition during mate search in a sexually highly dimorphic orb-weaving spider. Oecologia, 142, 653–662.  https://doi.org/10.1007/s00442-004-1756-3.CrossRefPubMedGoogle Scholar
  30. Foellmer, M. W., & Moya-Laraño, J. (2007). Sexual size dimorphism in spiders: Patterns and processes. In D. J. Fairbairn, W. U. Blanckenhorn, & T. Szekely (Eds.), Sex, size and gender roles: evolutionary studies of sexual size dimorphism (pp. 71–81). New York: Oxford University Press.CrossRefGoogle Scholar
  31. Garrison, N. L., Rodriguez, J., Agnarsson, I., Coddington, J. A., Griswold, C. E., Hamilton, C. A., et al. (2016). Spider phylogenomics: Untangling the spider tree of life. PeerJ, 4, e1719.  https://doi.org/10.7717/peerj.1719.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.CrossRefGoogle Scholar
  33. Gertsch, W. J. (1955). The North American bolas spiders of the genera Mastophora and Agatostichus. Bulletin of the American Museum of Natural History, 106, 225–254.Google Scholar
  34. Gower, J. C. (1975). Generalized Procrustes analysis. Psychometrika, 40, 33–51.CrossRefGoogle Scholar
  35. Gregorič, M., Agnarsson, I., Blackledge, T. A., & Kuntner, M. (2015). Phylogenetic position and composition of Zygiellinae and Caerostris, with new insight into orb-web evolution and gigantism. Zoological Journal of the Linnean Society, 175, 225–243.  https://doi.org/10.1111/zoj.12281.CrossRefGoogle Scholar
  36. Grossi, B., & Canals, M. (2015). Energetics, scaling, and sexual size dimorphism of spiders. Acta Biotheoretica, 63, 71–81.  https://doi.org/10.1007/s10441-014-9237-5.CrossRefPubMedGoogle Scholar
  37. Grossi, B., Veloso, C., Taucare-Ríos, A., & Canals, M. (2016). Allometry of locomotor organs and sexual size dimorphism in the mygalomorph spider Grammostola rosea (Walckenaer, 1837) (Araneae, Theraphosidae). Journal of Arachnology, 44, 99–102.CrossRefGoogle Scholar
  38. Guillerme, T. (2018). dispRity: A modular R package for measuring disparity. Methods in Ecology and Evolution, 9, 1755–1763.CrossRefGoogle Scholar
  39. Guillerme, T., & Cooper, N. (2018). dispRity manual.  https://doi.org/10.6084/m9.figshare.6187337.v1.
  40. Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: A method for quantifying curves and surfaces. Hystrix, 24, 103–109.  https://doi.org/10.4404/hystrix-24.1-6292.CrossRefGoogle Scholar
  41. Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 73–98). New York: Kluwer Academic.CrossRefGoogle Scholar
  42. Hammer, Ø., Harper, D.A.T., & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, (1): 9. https://palaeo-electronica.org/2001_1/past/issue1_01.htm
  43. Hansen, T. F. (1997). Stabilizing selection and the comparative analyses of adaptation. Evolution, 51, 1341–1351.  https://doi.org/10.1111/j.1558-5646.1997.tb01457.x.CrossRefPubMedGoogle Scholar
  44. Head, G. (1995). Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (Class Araneae). Evolution, 49, 776–781.CrossRefGoogle Scholar
  45. Hopkins, M. J., & Gerber, S. (2017). Morphological disparity. Cham: Springer.CrossRefGoogle Scholar
  46. Hormiga, G., Scharff, N., & Coddington, J. A. (2000). The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Systematic Biology, 49, 435–462.CrossRefGoogle Scholar
  47. Kallal, R. J., Dimitrov, D., Arnedo, M. A., Giribet, G., & Hormiga, G. (2019). Monophyly, taxon sampling, and the nature of ranks in the classification of orb-weaving spiders (Araneae: Araneoidea). Systematic Biology.  https://doi.org/10.1093/sysbio/syz043.CrossRefPubMedGoogle Scholar
  48. Kallal, R. J., Fernández, R., Giribet, G., & Hormiga, G. (2018). A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. Molecular Phylogenetics and Evolution, 126, 129–140.  https://doi.org/10.1016/j.ympev.2018.04.007.CrossRefPubMedGoogle Scholar
  49. Kallal, R. J., & Hormiga, G. (2018). Systematics, phylogeny and biogeography of the Australasian leaf-curling orb-weaving spiders (Araneae: Araneidae: Zygiellinae), with comparative analysis of retreat evolution. Zoological Journal of the Linnean Society, 184, 1055–1141.  https://doi.org/10.1093/zoolinnean/zly014.CrossRefGoogle Scholar
  50. Knoflach, B., & Van Harten, A. (2006). The one-palped spider genera Tidarren and Echinotheridion in the Old World (Araneae, Theridiidae), with comparative remarks on Tidarren from America. Journal of Natural History, 40, 1483–1616.CrossRefGoogle Scholar
  51. Kuntner, M., & Coddington, J. A. (2009). Discovery of the largest orbweaving spider species: The evolution of gigantism in Nephila. PLoS ONE, 4, e7516.  https://doi.org/10.1371/journal.pone.0007516.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kuntner, M., Hamilton, C. A., Cheng, R.-C., Gregorič, M., Lupše, N., Lokovšek, T., et al. (2019). Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism. Systematic Biology, 68, 555–572.  https://doi.org/10.1093/sysbio/syy082.CrossRefPubMedGoogle Scholar
  53. Legendre, P. (2018). Lmodel2: model II regression. R package version 1.7-3. https://CRAN.R-project.org/package=lmodel2.
  54. LeGrand, R. S., & Morse, D. H. (2000). Factors driving extreme sexual size dimorphism of a sit-and-wait predator under low density. Biological Journal of the Linnean Society, 71, 643–664.  https://doi.org/10.1006/bijl.2000.0466.CrossRefGoogle Scholar
  55. McLean, C. J., Garwood, R. J., & Brassey, C. A. (2018). Sexual dimorphism in the arachnid orders. PeerJ, 6, e5751.  https://doi.org/10.7717/peerj.5751.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36, 235–247.CrossRefGoogle Scholar
  57. Monteiro, L. R. (1999). Multivariate regression models and geometric morphometrics: The search for causal factors in the analysis of shape. Systematic Biology, 48, 192–199.CrossRefGoogle Scholar
  58. Montgomery, T. H. (1910). The significance of the courtship and secondary sexual characteristics of araneads. The American Naturalist, 44, 151–177.CrossRefGoogle Scholar
  59. Morbey, Y. E., & Ydenberg, R. C. (2008). Protandrous arrival timing to breeding areas: A review. Ecology Letters, 4, 663–673.  https://doi.org/10.1046/j.1461-0248.2001.00265.x.CrossRefGoogle Scholar
  60. Moya-Laraño, J., Halaj, J., & Wise, D. H. (2002). Climbing to reach females: Romeo should be small. Evolution, 56, 420–425.CrossRefGoogle Scholar
  61. Moya-Laraño, J., Vinković, D., Allard, C., & Foellmer, M. W. (2007). Gravity still matters. Functional Ecology, 21, 1178–1181.  https://doi.org/10.1111/j.1365-2435.2007.01335.x.CrossRefGoogle Scholar
  62. Moya-Laraño, J., & Foellmer, M. W. (2016). The gravity hypothesis. In T. K. Shackelford & V. A. Weekes-Shackelford (Eds.), Encyclopedia of evolutionary psychological science (pp. 1–7). Switzerland: Springer.Google Scholar
  63. Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., Pearse, W. (2018). Caper: comparative analyses of phylogenetics and evolution. R package version 1.0.1. https://CRAN.R-project.org/package=caper.
  64. Paradis, E., Blomberg, S., Bolker, B., Brown, J., Claude, J., Cuong, H.S. et al. (2018). Ape: Analyses of phylogenetics and evolution. R package version 5.2. https://CRAN.R-project.org/package=ape.
  65. Prenter, J., Montgomery, W. I., & Elwood, R. W. (1995). Multivariate morphometrics and sexual dimorphism in the orb-web spider Metellina segmentata (Clerck, 1757) (Araneae, Metidae). Biological Journal of the Linnean Society, 55, 345–354.CrossRefGoogle Scholar
  66. Prenter, J., Perez-Staples, D., & Taylor, P. W. (2010). The effects of morphology and substrate diameter on climbing and locomotor performance in male spiders. Functional Ecology, 24, 400–408.  https://doi.org/10.1111/j.1365-2435.2009.01633.x.CrossRefGoogle Scholar
  67. R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved August 1, 2019 from https://www.R-project.org/
  68. Rensch, H. E. (1950). Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonner Zoologische Beitrage, 1, 58–69.Google Scholar
  69. Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 17–223.  https://doi.org/10.1111/j.2041-210X.2011.00169.x.CrossRefGoogle Scholar
  70. Rohlf, F.J. (2017). tpsDig2 Version 2.30 [Computer Software]. Stony Brook: Stony Brook University.Google Scholar
  71. Rohlf, F. J., & Slice, D. E. (1990). Extensions of the Procrustes method for optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.  https://doi.org/10.2307/2992207.CrossRefGoogle Scholar
  72. Sanger, T. J., Sherratt, E., McGlothlin, J. W., Brodie, E. D., III, Losos, J. B., & Abzhanov, A. (2013). Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution, 67, 2180–2193.  https://doi.org/10.1111/evo.12100.CrossRefPubMedGoogle Scholar
  73. Santibáñez-López, C. E., Kriebel, R., & Sharma, P. P. (2017). Eadem figura manet: measuring morphological convergence in diplocentrid scorpions (Arachnida: Scorpiones: Diplocentridae) under a multilocus phylogenetic framework. Invertebrate Systematics, 31, 233–248.  https://doi.org/10.1071/IS16078.CrossRefGoogle Scholar
  74. Scharff, N., & Coddington, J. A. (1997). A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zoological Journal of the Linnean Society, 120, 355–434.  https://doi.org/10.1111/j.1096-3642.1997.tb01281.x.CrossRefGoogle Scholar
  75. Scharff, N., Coddington, J.A., Blackledge, T.A., Agnarsson, I., Framenau, V.W., Szűts, T., et al. (2019). Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics.  https://doi.org/10.1111/cla.12382.
  76. Schlager, S. (2017). Morpho and Rvcg—shape analysis in R. In G. Zheng, S. Li, & G. Szekely (Eds.), Statistical shape and deformation analysis (pp. 217–256). San Diego: Academic Press.CrossRefGoogle Scholar
  77. Shao, L., & Li, S. (2018). Early Cretaceous greenhouse pumped higher taxa diversification in spiders. Molecular Phylogenetics and Evolution, 127, 146–155.  https://doi.org/10.1016/j.ympev.2018.05.026.CrossRefPubMedGoogle Scholar
  78. Sharma, P. P., Santiago, M. A., Kriebel, R., Lipps, S. M., Buenavente, P. A. C., Diesmos, A. C., et al. (2017). A multilocus phylogeny of Podoctidae (Arachnida, Opiliones, Laniatores) and parametric shape analysis reveal disutility of subfamilial nomenclature in armored harvestmen systematics. Molecular Phylogenetics and Evolution, 106, 163–173.  https://doi.org/10.1016/j.ympev.2016.09.019.CrossRefGoogle Scholar
  79. Smith, H. M. (2006). A revision of the genus Poltys in Australasia (Araneae: Araneidae). Records of the Australian Museum, 58, 43–96.CrossRefGoogle Scholar
  80. Uhl, G., Schmidt, S., Martin, M. A., & Blanckenhorn, W. (2004). Food and sex-specific growth strategies in a spider. Evolutionary Ecology Research, 6, 523–540.Google Scholar
  81. Uyeda, J. C., & Harmon, L. J. (2014). A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Systematic Biology, 63, 902–918.  https://doi.org/10.1093/sysbio/syu057.CrossRefPubMedGoogle Scholar
  82. Uyeda, J. C., Pennell, M. W., Miller, E. T., Maia, R., & McClain, C. R. (2017). The evolution of energetic scaling across the vertebrate tree of life. The American Naturalist, 190, 185–199.  https://doi.org/10.1086/692326.CrossRefPubMedGoogle Scholar
  83. Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., et al. (2017). The spider tree of life: Phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33, 574–616.  https://doi.org/10.1111/cla.12182.CrossRefGoogle Scholar
  84. Webb, T. J., & Freckleton, R. P. (2007). Only half right: Species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS ONE, 2, e897.  https://doi.org/10.1371/journal.pone.0000897.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wood, H. M., Gillespie, R. G., Griswold, C. E., & Wainwright, P. C. (2015). Why is Madagascar special? The extraordinarily slow evolution of pelican spiders (Araneae, Archaeidae). Evolution, 69, 462–481.  https://doi.org/10.1111/evo.12578.CrossRefPubMedGoogle Scholar
  86. World Spider Catalog. (2019). World spider catalog, version 20.0. Natural History Museum Bern. Retrieved March 19, 2019 from http://wsc.nmbe.ch.
  87. Yeargan, K. V. (1994). Biology of bolas spiders. Annual Review of Entomology, 39, 81–99.CrossRefGoogle Scholar
  88. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: A primer. New York: Elsevier Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesThe George Washington UniversityWashingtonUSA
  2. 2.Department of Anatomical SciencesStony Brook UniversityNew YorkUSA

Personalised recommendations