Skip to main content
Log in

Obésité et maladies rénales chroniques associées

Obesity and related chronic kidney disease

  • Revue Scientifique / Scientific Review
  • Published:
Obésité

Résumé

L’obésité augmente la prévalence des maladies rénales chroniques. De nombreuses données épidémiologiques montrent que l’augmentation de l’indice de masse corporelle est principalement associée à l’apparition de glomérulopathies (GAO: glomérulopathies associées à l’obésité). Les GAO peuvent résulter soit de l’action délétère directe de facteurs sécrétés par le tissu adipeux comme la leptine, soit des mécanismes indirects liés aux pathologies associées à l’obésité (hypertension, diabète de type 2 ou dyslipidémies). Parallèlement aux stratégies thérapeutiques consistant à traiter séparément les néphropathies et l’obésité, des stratégies innovantes se développent (statines ou des agonistes des PPARs) ciblant plus spécifiquement les GAO.

Abstract

Obesity increases the prevalence of chronic kidney disease. Epidemiological data shows that higher body mass index is associated with glomerulonephritis, or obesity-related glomerulopathy (ORG). ORG can be induced directly by adipokines secreted by adipose tissue (leptin) or indirectly by obesity-related diseases (arterial hypertension, type 2 diabetes and dyslipidemia). Currently, nephropathy and obesity are treated separately. But, in the near future, the innovative use of statins and PPAR agonists could target ORG more specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Haslam DW, James WP (2005) Obesity. Lancet 366: 1197–1209

    Article  PubMed  Google Scholar 

  2. Kambham N, Markowitz GS, Valeri AM, et al. (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59: 1498–1509

    Article  PubMed  CAS  Google Scholar 

  3. D’Agati V (1994) The many masks of focal segmental glomerulosclerosis. Kidney Int 46: 1223–1241

    Article  PubMed  CAS  Google Scholar 

  4. Kramer H, Luke A, Bidani A, et al. (2005) Obesity and prevalent and incident CKD: the hypertension detection and follow-up program. Am J Kidney Dis 46: 587–594

    Article  PubMed  Google Scholar 

  5. Hsu CY, McCulloch CE, Iribarren C, et al. (2006) Body mass index and risk for end-stage renal disease. Ann Int Med 144: 21–28

    PubMed  Google Scholar 

  6. Verhave JC, Hillege HL, Burgerhof JG, et al. (2003) Cardiovascular risk factors are differently associated with urinary albumin excretion in men and women. J Am Soc Nephrol 14: 1330–1335

    Article  PubMed  CAS  Google Scholar 

  7. Pinto-Sietsma SJ, Navis G, Janssen WM, et al. (2003) A central body fat distribution is related to renal function impairment, even in lean subjects. Am J Kidney Dis 41: 733–741

    PubMed  Google Scholar 

  8. Bonnet F, Deprele C, Sassolas A, et al. (2001) Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am J Kidney Dis 37: 720–727

    Article  PubMed  CAS  Google Scholar 

  9. Taylor EN, Stampfer MJ, Curhan GC (2005) Obesity, weight gain, and the risk of kidney stones JAMA 293: 455–462

    Article  PubMed  CAS  Google Scholar 

  10. Lipworth L, Tarone RE, McLaughlin JK (2006) The epidemiology of renal cell carcinoma. J Urol 176: 2353–2358

    Article  PubMed  Google Scholar 

  11. Bergstrom A, Hsieh CC, Lindblad P, et al. (2001) Obesity and renal cell cancer-a quantitative review. Br J Cancer 85: 984–990

    Article  PubMed  CAS  Google Scholar 

  12. Lafontan M (2005) Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol 45: 119–146

    Article  PubMed  CAS  Google Scholar 

  13. Munzberg H, Bjornholm M, Bates SH, et al. (2005) Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 62: 642–652

    Article  PubMed  CAS  Google Scholar 

  14. Ogawa Y, Masuzaki H, Isse N, et al. (1995) Molecular cloning of rat obese cDNA and augmented gene expression in genetically obese Zucker fatty (fa/fa) rats. J Clin Invest 96: 1647–1652

    PubMed  CAS  Google Scholar 

  15. Serradeil-Le Gal C, Raufaste D, Brossard G, et al. (1997) Characterization and localization of leptin receptors in the rat kidney. FEBS Lett 404: 185–91

    Article  PubMed  CAS  Google Scholar 

  16. Han DC, Isono M, Chen S, et al. (2001) Leptin stimulates type I collagen production in db/db mesangial cells: glucose uptake and TGF-beta type II receptor expression. Kidney Int 59: 1315–1323

    Article  PubMed  CAS  Google Scholar 

  17. Wolf G, Hamann A, Han DC, et al. (1999) Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis [seecomments]. Kidney Int 56: 860–872

    Article  PubMed  CAS  Google Scholar 

  18. Cumin F, Baum HP, Levens N (1996) Leptin is cleared from the circulation primarily by the kidney. Int J Obes Relat Metab Disord 20: 1120–1126

    PubMed  CAS  Google Scholar 

  19. Milan G, Granzotto M, Scarda A, et al. (2002) Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obes Res 10: 1095–1103

    PubMed  CAS  Google Scholar 

  20. Hotta K, Funahashi T, Arita Y, et al. (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20: 1595–1599

    PubMed  CAS  Google Scholar 

  21. Chudek J, Adamczak M, Karkoszka H, et al. (2003) Plasma adiponectin concentration before and after successful kidney transplantation. Transplant Proc 35: 2186–2189

    Article  PubMed  CAS  Google Scholar 

  22. Steppan CM, Bailey ST, Bhat S, et al. (2001) The hormone resistin links obesity to diabetes. Nature 409: 307–312

    Article  PubMed  CAS  Google Scholar 

  23. Axelsson J, Bergsten A, Qureshi AR, et al. (2006) Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int 69: 596–604

    Article  PubMed  CAS  Google Scholar 

  24. Wang W, Koka V, Lan HY (2005) Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton) 10: 48–56

    Article  Google Scholar 

  25. Gu JW, Wang J, Stockton A, et al. (2004) Cytokine gene expression profiles in kidney medulla and cortex of obese hypertensive dogs. Kidney Int 66: 713–721

    Article  PubMed  CAS  Google Scholar 

  26. Fain JN, Tichansky DS, Madan AK (2005) Transforming growth factor beta1 release by human adipose tissue is enhanced in obesity. Metabolism 54: 1546–1551

    Article  PubMed  CAS  Google Scholar 

  27. Hall JE, Crook ED, Jones DW, et al. (2002) Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci 324: 127–137

    Article  PubMed  Google Scholar 

  28. Chagnac A, Weinstein T, Korzets A, et al. (2000) Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol 278: F817–F822

    PubMed  CAS  Google Scholar 

  29. Righetti AE, Boer-Lima PA, Lopes de Faria JB (2001) The presence of genetic hypertension stimulates early renal accumulation of fibronectin in experimental diabetes mellitus. Diabetologia 44: 2088–2091

    Article  PubMed  CAS  Google Scholar 

  30. Tanida M, Iwashita S, Ootsuka Y, et al. (2000) Leptin injection into white adipose tissue elevates renal sympathetic nerve activity dose-dependently through the afferent nerves pathway in rats. Neurosci Lett 293: 107–110

    Article  PubMed  CAS  Google Scholar 

  31. Quehenberger P, Exner M, Sunder-Plassmann R, et al. (2002) Leptin induces endothelin-1 in endothelial cells in vitro. Circ Res 90: 711–718

    Article  PubMed  CAS  Google Scholar 

  32. Beltowski J, Jamroz-Wisniewska A, Borkowska E, et al. (2004) Up-regulation of renal Na+, K+-ATPase: the possible novel mechanism of leptin-induced hypertension. Pol J Pharmacol 56: 213–22

    PubMed  CAS  Google Scholar 

  33. Campbell DJ, Habener JF (1987) Cellular localization of angiotensinogen gene expression in brown adipose tissue and mesentery: quantification of messenger ribonucleic acid abundance using hybridization in situ. Endocrinology 121: 1616–1626

    Article  PubMed  CAS  Google Scholar 

  34. Bloem LJ, Manatunga AK, Tewksbury DA, et al. (1995) The serum angiotensinogen concentration and variants of the angiotensinogen gene in white and black children. J Clin Invest 95: 948–953

    PubMed  CAS  Google Scholar 

  35. Massiera F, Bloch-Faure M, Ceiler D, et al. (2001) Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. Faseb J 15: 2727–2729

    PubMed  CAS  Google Scholar 

  36. Berfield AK, Raugi GJ, Abrass CK (1996) Insulin induces rapid and specific rearrangement of the cytoskeleton of ratmesangial cells in vitro. J Histochem Cytochem 44: 91–101

    PubMed  CAS  Google Scholar 

  37. Frank HJ, Levin ER, Hu RM, et al. (1993) Insulin stimulates endothelin binding and action on cultured vascular smooth muscle cells. Endocrinology 133: 1092–1097

    Article  PubMed  CAS  Google Scholar 

  38. Juncos LA, Ito S (1993) Disparate effects of insulin on isolated rabbit afferent and efferent arterioles. J Clin Invest 92: 1981–1985

    Article  PubMed  CAS  Google Scholar 

  39. Lupia E, Elliot SJ, Lenz O, et al. (1999) IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes 48: 1638–1644

    Article  PubMed  CAS  Google Scholar 

  40. Anderson PW, Zhang XY, Tian J, et al. (1996) Insulin and angiotensin II are additive in stimulating TGF-beta 1 and matrix mRNAs in mesangial cells. Kidney Int 50: 745–753

    Article  PubMed  CAS  Google Scholar 

  41. Segura J, Campo C, Roldan C, et al. (2004) Hypertensive renal damage in metabolic syndrome is associated with glucose metabolism disturbances. J Am Soc Nephrol 15Suppl 1: S37–S42

    Article  PubMed  Google Scholar 

  42. Koya D, Jirousek MR, Lin YW, et al. (1997) Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 100: 115–126

    PubMed  CAS  Google Scholar 

  43. Bohlender JM, Franke S, Stein G, et al. (2005) Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 289: F645–F659

    Article  PubMed  CAS  Google Scholar 

  44. Zhou G, Li C, Cai L (2004) Advanced glycation endproducts induce connective tissue growth factor-mediated renal fibrosis predominantly through transforming growth factor beta-independent pathway. Am J Pathol 165: 2033–2043

    PubMed  CAS  Google Scholar 

  45. Yang CW, Vlassara H, Peten EP, et al. (1994) Advanced glycation end products up-regulate gene expression found in diabeticglomerular disease. Proc Natl Acad Sci USA 91: 9436–9440

    Article  PubMed  CAS  Google Scholar 

  46. Weinberg JM (2006) Lipotoxicity. Kidney Int 70: 1560–1566

    Article  PubMed  CAS  Google Scholar 

  47. Kamijo A, Kimura K, Sugaya T, et al. (2002) Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int 62: 1628–1637

    Article  PubMed  CAS  Google Scholar 

  48. Wang Z, Jiang T, Li J, et al. (2005) Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54: 2328–2335

    Article  PubMed  CAS  Google Scholar 

  49. Jiang T, Liebman SE, Lucia MS, et al. (2005) Calorie restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and agerelated renal disease. J Am Soc Nephrol 16: 2385–2394

    Article  PubMed  CAS  Google Scholar 

  50. Thomas ME, Harris KP, Walls J, et al. (2002) Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria. Am J Physiol Renal Physiol 283: F640–F647

    PubMed  Google Scholar 

  51. Arici M, Chana R, Lewington A, et al. (2003) Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma. J Am Soc Nephrol 14: 17–27

    Article  PubMed  CAS  Google Scholar 

  52. Stern JS, Gades MD, Wheeldon CM, et al. (2001) Calorie restriction in obesity: prevention of kidney disease in rodents. J Nutr 131: S913–S917

    Google Scholar 

  53. Zhang R, Thakur V, Morse S, et al. (2002) Renal and cardiovascular considerations for the nonpharmacological and pharmacological therapies of obesity-hypertension. J Hum Hypertens 16: 819–827

    Article  PubMed  CAS  Google Scholar 

  54. Ruiz-Ortega M, Egido J (1997) Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts. Kidney Int 52: 1497–1510

    Article  PubMed  CAS  Google Scholar 

  55. Kurata A, Nishizawa H, Kihara S, et al. (2006) Blockade of Angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation. Kidney Int 70: 1717–1724

    Article  PubMed  CAS  Google Scholar 

  56. Furuya R, Odamaki M, Kumagai H, et al. (2006) Impact of angiotensin II receptor blocker on plasma levels of adiponectin and advanced oxidation protein products in peritoneal dialysis patients. Blood Purif 24: 445–450

    Article  PubMed  CAS  Google Scholar 

  57. Vaziri ND, Xu ZG, Shahkarami A, et al. (2005) Role of AT-1 receptor in regulation of vascular MCP-1, IL-6, PAI-1, MAP kinase, and matrix expressions in obesity. Kidney Int 68: 2787–2793

    Article  PubMed  CAS  Google Scholar 

  58. Strutz F (2001) Potential methods to prevent interstitial fibrosis in renal disease. Expert Opin Investig Drugs 10: 1989–2001

    Article  PubMed  CAS  Google Scholar 

  59. Richards RJ, Porter JR, Inserra F, et al. (2001) Effects of dehydroepiandrosterone and quinapril on nephropathy in obese Zucker rats. Kidney Int 59: 37–43

    Article  PubMed  CAS  Google Scholar 

  60. Padwal RS, Majumdar SR (2007) Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369: 71–77

    Article  PubMed  CAS  Google Scholar 

  61. Baigent C, Landray M, Leaper C, et al. (2005) First United Kingdom Heart and Renal Protection (UK-HARP-I) study: biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. Am J Kidney Dis 45: 473–484

    Article  PubMed  CAS  Google Scholar 

  62. Gheith OA, Sobh MA, Mohamed Kel S, et al. (2002) Impact of treatment of dyslipidemia on renal function, fat deposits and scarring in patients with persistent nephrotic syndrome. Nephron 91: 612–629

    Article  PubMed  CAS  Google Scholar 

  63. Banes-Berceli AK, Shaw S, Ma G, et al. (2006) Effect of simvastatin on high glucose-and angiotensin II-induced activation of the JAK/STAT pathway in mesangial cells. Am J Physiol Renal Physiol 291: F116–121

    Article  PubMed  CAS  Google Scholar 

  64. Gianella A, Nobili E, Abbate M, et al. (2007) Rosuvastatin treatment prevents progressive kidney inflammation and fibrosis in stroke-prone rats. Am J Pathol 170: 1165–1177

    Article  PubMed  CAS  Google Scholar 

  65. Staels B, Fruchart JC (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54: 2460–2470

    Article  PubMed  CAS  Google Scholar 

  66. Fried LF, Orchard TJ, Kasiske BL (2001) Effect of lipid reduction on the progression of renal disease: a metaanalysis. Kidney Int 59: 260–269

    Article  PubMed  CAS  Google Scholar 

  67. Park CW, Kim HW, Ko SH, et al. (2006) Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes 55: 885–893

    Article  PubMed  CAS  Google Scholar 

  68. Ohga S, Shikata K, Yozai K, et al. (2006) Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-KB activation. Am J Physiol Renal Physiol 292(4): F1141–F1150

    Article  PubMed  CAS  Google Scholar 

  69. Panzer U, Steinmetz OM, Reinking RR, et al. (2006) Compartment-specific expression and function of the chemokine IP-10/CXCL10 in a model of renal endothelial microvascular injury. J Am Soc Nephrol 17: 454–464

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -P. Pradère.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradère, J.P. Obésité et maladies rénales chroniques associées. Obes 2, 265–271 (2007). https://doi.org/10.1007/s11690-007-0072-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-007-0072-6

Mots clés

Keywords

Navigation