What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations

  • Mara SimopoulouEmail author
  • Konstantinos Sfakianoudis
  • Petroula Tsioulou
  • Anna Rapani
  • Polina Giannelou
  • Nikolaos Kiriakopoulos
  • Agni Pantou
  • Nikolaos Vlahos
  • George Anifandis
  • Stamatis Bolaris
  • Konstantinos Pantos
  • Michael Koutsilieris


Assisted reproduction provides a wide spectrum of treatments and strategies addressing infertility. However, distinct groups of infertile patients with unexplained infertility, congenital disorders, and other complex cases pose a challenge in in vitro fertilization (IVF) practices. This special cohort of patients is associated with futile attempts, IVF overuse, and dead ends in management. Cutting edge research on animal models introduced this concept, along with the development of artificial organs with the aim to mimic the respective physiological functions in reproduction. Extrapolation on clinical application leads to the future use of infertility management in humans. To date, the successful clinical application of artificial reproductive organs in humans is not feasible because further animal model studies are required prior to clinical trials. The application of these artificial organs could provide a solution to infertility cases with no other options. This manuscript presents an overview on the current status, future prospects, and considerations on the potential clinical application of artificial ovary, uterus, and gametes in humans. This paper presents how the IVF practice landscape may be shaped and challenged in the future, along with the subsequent concerns in assisted reproductive treatments.


artificial ovary artificial uterus artificial gametes assisted reproduction considerations in vitro fertilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Min JK, Breheny SA, MacLachlan V, Healy DL. What is the most relevant standard of success in assisted reproduction? The singleton, term gestation, live birth rate per cycle initiated: the BESST endpoint for assisted reproduction. Hum Reprod 2004; 19(1): 3–7Google Scholar
  2. 2.
    Wang J, Sauer MV. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag 2006; 2(4): 355–364Google Scholar
  3. 3.
    Huang JYJ, Rosenwaks Z. Assisted reproductive techniques. In: Rosenwaks Z, Wassarman PM. Human Fertility: Methods and Protocols. New York, NY: Springer New York, 2014: 171–231Google Scholar
  4. 4.
    Audibert C, Glass D. A global perspective on assisted reproductive technology fertility treatment: an 8-country fertility specialist survey. Reprod Biol Endocrinol 2015;13: 133Google Scholar
  5. 5.
    Yoo SS. 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat 2015; 25(5): 507–511Google Scholar
  6. 6.
    Kim J, Perez AS, Claflin J, David A, Zhou H, Shikanov A. Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice. NPJ Regen Med 2016; 1(1): 16010Google Scholar
  7. 7.
    Podfigurna-Stopa A, Czyzyk A, Grymowicz M, Smolarczyk R, Katulski K, Czajkowski K, Meczekalski B. Premature ovarian insufficiency: the context of long-term effects. J Endocrinol Invest 2016; 39(9): 983–990Google Scholar
  8. 8.
    Díaz-García C, Herraiz S. The artificial ovary: any new step is a step forward. Fertil Steril 2014; 101(4): 940Google Scholar
  9. 9.
    Schmidt VM, Isachenko E, Rappl G, Rahimi G, Hanstein B, Morgenstern B, Mallmann P, Isachenko V. Construction of human artificial ovary from cryopreserved ovarian tissue: appearance of apoptosis and necrosis after enzymatic isolation of follicles. Cryobiology 2018;84:10–14Google Scholar
  10. 10.
    Amorim CA, Shikanov A. The artificial ovary: current status and future perspectives. Future Oncol 2016; 12(20): 2323–2332Google Scholar
  11. 11.
    Dawood AS, Salem HA. Current clinical applications of platelet-rich plasma in various gynecological disorders: an appraisal of theory and practice. Clin Exp Reprod Med 2018; 45(2): 67–74Google Scholar
  12. 12.
    Sfakianoudis K, Simopoulou M, Nitsos N, Rapani A, Pantou A, Vaxevanoglou T, Kokkali G, Koutsilieris M, Pantos K. A case series on platelet-rich plasma revolutionary management of poor responder patients. Gynecol Obstet Invest 2019; 84(1): 99–106Google Scholar
  13. 13.
    Devoto L, Palomino A, Céspedes P, Kohen P. Neuroendocrinology and ovarian aging. Gynecol Endocrinol 2012; 28(sup1): 14–17Google Scholar
  14. 14.
    Ye H, Zheng T, Li W, Li X, Fu X, Huang Y, Hu C, Li J, Huang J, Liu Z, Zheng L, Zheng Y. Ovarian stem cell nests in reproduction and ovarian aging. Cell Physiol Biochem 2017; 43(5): 1917–1925Google Scholar
  15. 15.
    Kim YJ, Kim YY, Kang BC, Kim MS, Ko IK, Liu HC, Rosenwaks Z, Ku SY. Induction of multiple ovulation via modulation of angiotensin II receptors in in vitro ovarian follicle culture models. J Tissue Eng Regen Med 2017; 11(11): 3100–3110Google Scholar
  16. 16.
    Kim YY, Tamadon A, Ku SY. Potential use of antiapoptotic proteins and noncoding RNAs for efficient in vitro follicular maturation and ovarian bioengineering. Tissue Eng Part B Rev 2017; 23(2): 142–158Google Scholar
  17. 17.
    Luyckx V, Dolmans MM, Vanacker J, Legat C, Fortuño Moya C, Donnez J, Amorim CA. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril 2014; 101(4): 1149–1156Google Scholar
  18. 18.
    Tamadon A, Park KH, Kim YY, Kang BC, Ku SY. Efficient biomaterials for tissue engineering of female reproductive organs. Tissue Eng Regen Med 2016; 13(5): 447–454Google Scholar
  19. 19.
    Paulini F, Vilela JMV, Chiti MC, Donnez J, Jadoul P, Dolmans MM, Amorim CA. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online 2016; 33(3): 425–432Google Scholar
  20. 20.
    Kniazeva E, Hardy AN, Boukaidi SA, Woodruff TK, Jeruss JS, Shea LD. Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model. Sci Rep 2015; 5(1): 17709Google Scholar
  21. 21.
    Chiti MC, Dolmans MM, Mortiaux L, Zhuge F, Ouni E, Shahri PAK, Van Ruymbeke E, Champagne SD, Donnez J, Amorim CA. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet 2018; 35(1): 41–48Google Scholar
  22. 22.
    Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017;8:15261Google Scholar
  23. 23.
    Yun JW, Kim YY, Ahn JH, Kang BC, Ku SY. Use of nonhuman primates for the development of bioengineered female reproductive organs. Tissue Eng Regen Med 2016; 13(4): 323–334Google Scholar
  24. 24.
    Del Priore G, Schlatt S, Malanowska-Stega J. Uterus transplant techniques in primates: 10 years’ experience. Exp Clin Transplant 2008; 6(1): 87–94Google Scholar
  25. 25.
    von Schönfeldt V, Chandolia R, Ochsenkühn R, Nieschlag E, Kiesel L, Sonntag B. FSH prevents depletion of the resting follicle pool by promoting follicular number and morphology in fresh and cryopreserved primate ovarian tissues following xenografting. Reprod Biol Endocrinol 2012; 10(1): 98Google Scholar
  26. 26.
    Kim YY, Yun JW, Kim JM, Park CG, Rosenwaks Z, Liu HC, Kang BC, Ku SY. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles. J Investig Med 2016; 64(4): 888–893Google Scholar
  27. 27.
    Huxley A. Brave New World. Reprint edition. New York: Harper Perennial, 1932Google Scholar
  28. 28.
    Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. Environmental influences on ovarian dysgenesis—developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13(7): 400–414Google Scholar
  29. 29.
    Luciano AA, Lanzone A, Goverde AJ. Management of female infertility from hormonal causes. Int J Gynaecol Obstet 2013; 123(Suppl 2): S9–S17Google Scholar
  30. 30.
    Simopoulou M, Asimakopoulos B, Bakas P, Boyadjiev N, Tzanakaki D, Creatsas G. Oocyte and embryo vitrification in the IVF laboratory: a comprehensive review. Folia Med (Plovdiv) 2014; 56(3): 161–169Google Scholar
  31. 31.
    Ho JR, Woo I, Louie K, Salem W, Jabara SI, Bendikson KA, Paulson RJ, Chung K. A comparison of live birth rates and perinatal outcomes between cryopreserved oocytes and cryopreserved embryos. J Assist Reprod Genet 2017; 34(10): 1359–1366Google Scholar
  32. 32.
    Kim S, Lee Y, Lee S, Kim T. Ovarian tissue cryopreservation and transplantation in patients with cancer. Obstet Gynecol Sci 2018; 61(4): 431–442Google Scholar
  33. 33.
    Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril 2014; 101(5): 1237–1243Google Scholar
  34. 34.
    Shi Q, Xie Y, Wang Y, Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep 2017; 7(1): 8538Google Scholar
  35. 35.
    Mathias FJ, D’Souza F, Uppangala S, Salian SR, Kalthur G, Adiga SK. Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity. Syst Biol Reprod Med 2014; 60(6): 317–322Google Scholar
  36. 36.
    Pacheco F, Oktay K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci 2017; 24(8): 1111–1120Google Scholar
  37. 37.
    Perrin J, Saïas-Magnan J, Broussais F, Bouabdallah R, D’Ercole C, Courbiere B. First French live-birth after oocyte vitrification performed before chemotherapy for fertility preservation. J Assist Reprod Genet 2016; 33(5): 663–666Google Scholar
  38. 38.
    Dittrich R, Lotz L, Keck G, Hoffmann I, Mueller A, Beckmann MW, van der Ven H, Montag M. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 2012; 97(2): 387–390Google Scholar
  39. 39.
    Silber S. Ovarian tissue cryopreservation and transplantation: scientific implications. J Assist Reprod Genet 2016; 33(12): 1595–1603Google Scholar
  40. 40.
    Torrealday S, Pal L. Premature menopause. Endocrinol Metab Clin North Am 2015; 44(3): 543–557Google Scholar
  41. 41.
    Balasch J, Gratacós E. Delayed childbearing: effects on fertility and the outcome of pregnancy. Curr Opin Obstet Gynecol 2012; 24(3): 187–193Google Scholar
  42. 42.
    Meczekalski B, Czyzyk A, Kunicki M, Podfigurna-Stopa A, Plociennik L, Jakiel G, Maciejewska-Jeske M, Lukaszuk K. Fertility in women of late reproductive age: the role of serum anti-Müllerian hormone (AMH) levels in its assessment. J Endocrinol Invest 2016; 39(11): 1259–1265Google Scholar
  43. 43.
    Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48(1): 68Google Scholar
  44. 44.
    Bulletti C, Palagiano A, Pace C, Cerni A, Borini A, de Ziegler D. The artificial womb. Ann N Y Acad Sci 2011; 1221(1): 124–128Google Scholar
  45. 45.
    Bulletti C, Jasonni VM, Tabanelli S, Gianaroli L, Ciotti PM, Ferraretti AP, Flamigni C. Early human pregnancy in vitro utilizing an artificially perfused uterus. Fertil Steril 1988; 49(6): 991–996Google Scholar
  46. 46.
    Pak SC, Song CH, So GY, Jang CH, Lee KH, Kim JY. Extrauterine incubation of fetal goats applying the extracorporeal membrane oxygenation via umbilical artery and vein. J Korean Med Sci 2002; 17(5): 663–668Google Scholar
  47. 47.
    Mittra AK, Choudhary NK, Zadgaonkar AS. Development of an artificial womb for acoustical simulation of mother’s abdomen. Int J Biomed Eng Technol 2008; 1(3): 315Google Scholar
  48. 48.
    Simonstein F. Artificial reproduction technologies (RTs)—all the way to the artificial womb? Med Health Care Philos 2006; 9(3): 359–365Google Scholar
  49. 49.
    Nick O, Megan E. Construction and test of an artificial uterus for ex situ development of shark embryos. Zoo Biol 2012; 31(2): 197–205Google Scholar
  50. 50.
    Partridge EA, Davey MG, Hornick MA, McGovern PE, Mejaddam AY, Vrecenak JD, Mesas-Burgos C, Olive A, Caskey RC, Weiland TR, Han J, Schupper AJ, Connelly JT, Dysart KC, Rychik J, Hedrick HL, Peranteau WH, Flake AW. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 2017;8:15112Google Scholar
  51. 51.
    Hellström M, El-Akouri RR, Sihlbom C, Olsson BM, Lengqvist J, Bäckdahl H, Johansson BR, Olausson M, Sumitran-Holgersson S, Brännström M. Towards the development of a bioengineered uterus: comparison of different protocols for rat uterus decellularization. Acta Biomater 2014; 10(12): 5034–5042Google Scholar
  52. 52.
    Lü SH, Wang HB, Liu H, Wang HP, Lin QX, Li DX, Song YX, Duan CM, Feng LX, Wang CY. Reconstruction of engineered uterine tissues containing smooth muscle layer in collagen/matrigel scaffold in vitro. Tissue Eng Part A 2009; 15(7): 1611–1618Google Scholar
  53. 53.
    Kisu I, Mihara M, Banno K, Hara H, Masugi Y, Araki J, Iida T, Yamada Y, Kato Y, Shiina T, Suganuma N, Aoki D. Uterus allotransplantation in cynomolgus macaque: a preliminary experience with non-human primate models. J Obstet Gynaecol Res 2014; 40(4): 907–918Google Scholar
  54. 54.
    Brännström M, Johannesson L, Bokström H, Kvarnström N, Mölne J, Dahm-Kähler P, Enskog A, Milenkovic M, Ekberg J, Diaz-Garcia C, Gäbel M, Hanafy A, Hagberg H, Olausson M, Nilsson L. Livebirth after uterus transplantation. Lancet 2015; 385(9968): 607–616Google Scholar
  55. 55.
    Brännström M. Womb transplants with live births: an update and the future. Expert Opin Biol Ther 2017; 17(9): 1105–1112Google Scholar
  56. 56.
    Ozkan O, Dogan NU, Ozkan O, Mendilcioglu I, Dogan S, Aydinuraz B, Simsek M. Uterus transplantation: from animal models through the first heart beating pregnancy to the first human live birth. Womens Health (Lond) 2016; 12(4): 442–449Google Scholar
  57. 57.
    Brännström M. Uterus transplantation and beyond. J Mater Sci Mater Med 2017; 28(5): 70Google Scholar
  58. 58.
    Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology 2018; 159(2): 1188–1198Google Scholar
  59. 59.
    Benner M, Ferwerda G, Joosten I, van der Molen RG. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2018; 24(4): 393–415Google Scholar
  60. 60.
    Huh Y, Kim YY, Ku SY. Perspective of bioartificial uterus as gynecological regenerative medicine. Tissue Eng Regen Med 2012; 9(5): 233–239Google Scholar
  61. 61.
    Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, Cutting R, Ong K, Sallam H, Li TC. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28(1): 14–38Google Scholar
  62. 62.
    Bosteels J, Kasius J, Weyers S, Broekmans FJ, Mol BWJ, D’Hooghe TM. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Database Syst Rev 2015; (2): CD009461Google Scholar
  63. 63.
    Dunselman GAJ, Vermeulen N, Becker C, Calhaz-Jorge C, D’Hooghe T, De Bie B, Heikinheimo O, Horne AW, Kiesel L, Nap A, Prentice A, Saridogan E, Soriano D, Nelen W; European Society of Human Reproduction and Embryology. ESHRE guideline: management of women with endometriosis. Hum Reprod 2014; 29(3): 400–412Google Scholar
  64. 64.
    Johnston-MacAnanny EB, Hartnett J, Engmann LL, Nulsen JC, Sanders MM, Benadiva CA. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil Steril 2010; 93(2): 437–441Google Scholar
  65. 65.
    Kitaya K, Matsubayashi H, Yamaguchi K, Nishiyama R, Takaya Y, Ishikawa T, Yasuo T, Yamada H. Chronic endometritis: potential cause of infertility and obstetric and neonatal complications. Am J Reprod Immunol 2016; 75(1): 13–22Google Scholar
  66. 66.
    Barash A, Dekel N, Fieldust S, Segal I, Schechtman E, Granot I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril 2003; 79(6): 1317–1322Google Scholar
  67. 67.
    Cervelló I, Santamaría X, Miyazaki K, Maruyama T, Simón C. Cell therapy and tissue engineering from and toward the uterus. Semin Reprod Med 2015; 33(5): 366–372Google Scholar
  68. 68.
    Zadehmodarres S, Salehpour S, Saharkhiz N, Nazari L. Treatment of thin endometrium with autologous platelet-rich plasma: a pilot study. JBRA Assist Reprod 2017; 21(1): 54–56Google Scholar
  69. 69.
    Gameiro S, Boivin J, Peronace L, Verhaak CM. Why do patients discontinue fertility treatment? A systematic review of reasons and predictors of discontinuation in fertility treatment. Hum Reprod Update 2012; 18(6): 652–669Google Scholar
  70. 70.
    Garel M, Blondel B, Karpel L, Blanchet V, Breart G, Frydman R, Olivennes F. Women’s views on Friendly IVF: a qualitative preliminary study. J Psychosom Obstet Gynaecol 2009; 30(2): 101–104Google Scholar
  71. 71.
    Simonstein F, Mashiach-Eizenberg M. The artificial womb: a pilot study considering people’s views on the artificial womb and ectogenesis in Israel. Camb Q Healthc Ethics 2009; 18(1): 87–94Google Scholar
  72. 72.
    Brucker SY, Rall K, Campo R, Oppelt P, Isaacson K. Treatment of congenital malformations. Semin Reprod Med 2011; 29(2): 101–112Google Scholar
  73. 73.
    Beale JM, Creighton SM. Long-term health issues related to disorders or differences in sex development/intersex. Maturitas 2016;94:143–148Google Scholar
  74. 74.
    Brinsden PR. Gestational surrogacy. Hum Reprod Update 2003; 9(5): 483–491Google Scholar
  75. 75.
    Long Y, Yao D, Pan X, Ou T. Clinical efficacy and safety of nervesparing radical hysterectomy for cervical cancer: a systematic review and meta-analysis. PLoS ONE 2014; 9(4): e94116Google Scholar
  76. 76.
    Brännström M, Dahm Kähler P, Greite R, Mölne J, Díaz-García C, Tullius SG. Uterus transplantation: a rapidly expanding field. Transplantation 2018; 102(4): 569–577Google Scholar
  77. 77.
    Puntambekar S, Telang M, Kulkarni P, Jadhav S, Sathe R, Warty N, Puntambekar S, Kade S, Panse M, Agarkhedkar N, Gandhi G, Manchekar M, Parekh H, Parikh K, Desai R, Mehta M, Chitale M, Nanda S. Laparoscopic-assisted uterus retrieval from live organ donors for uterine transplant. J Minim Invasive Gynecol 2018; 25(4): 571–572Google Scholar
  78. 78.
    Saso S, Clarke A, Bracewell-Milnes T, Saso A, Al-Memar M, Thum MY, Yazbek J, Del Priore G, Hardiman P, Ghaem-Maghami S, Smith JR. Psychological issues associated with absolute uterine factor infertility and attitudes of patients toward uterine transplantation. Prog Transplant 2016; 26(1): 28–39Google Scholar
  79. 79.
    Landau R. Artificial womb versus natural birth: an exploratory study of women’s views. J Reprod Infant Psychol 2007; 25(1): 4–17Google Scholar
  80. 80.
    Kaczor C. Could artificial wombs end the abortion debate? Natl Cathol Bioeth Q 2005; 5(2): 283–301Google Scholar
  81. 81.
    Devolder K, Harris J. The ambiguity of the embryo: ethical inconsistency in the human embryonic stem cell debate. Metaphilosophy 2007; 38(2–3): 153–169Google Scholar
  82. 82.
    Cutas D, Dondorp W, Swierstra T, Repping S, de Wert G. Artificial gametes: perspectives of geneticists, ethicists and representatives of potential users. Med Health Care Philos 2014; 17(3): 339–345Google Scholar
  83. 83.
    Hendriks S, Dancet EA, van Pelt AM, Hamer G, Repping S. Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 2015; 21(3): 285–296Google Scholar
  84. 84.
    Mertes H, Pennings G. Embryonic stem cell-derived gametes and genetic parenthood: a problematic relationship. Camb Q Healthc Ethics 2008; 17(1): 7–14Google Scholar
  85. 85.
    Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ celllike cells in mice. Science 2012; 338(6109): 971–975Google Scholar
  86. 86.
    Easley CA, Simerly CR, Schatten G. Gamete derivation from embryonic stem cells, induced pluripotent stem cells or somatic cell nuclear transfer-derived embryonic stem cells: state of the art. Reprod Fertil Dev 2014; 27(1): 89–92Google Scholar
  87. 87.
    Douglas T, Harding C, Bourne H, Savulescu J. Stem cell research and same-sex reproduction. In: Stem Cells: New Frontiers in Science & Ethics. World Scientific, 2012: 207–228Google Scholar
  88. 88.
    Smajdor A, Cutas D. Will artificial gametes end infertility? Health Care Anal 2015; 23(2): 134–147Google Scholar
  89. 89.
    Malchesky PS. Artificial organs 2015: a year in review. Artif Organs 2016; 40(3): 294–321Google Scholar
  90. 90.
    Simmons PD. The artificial heart: how close are we, and do we want to get there? J Law Med Ethics 2001; 29(3–4): 401–406Google Scholar
  91. 91.
    Harper J, Magli MC, Lundin K, Barratt CLR, Brison D. When and how should new technology be introduced into the IVF laboratory? Hum Reprod 2012; 27(2): 303–313Google Scholar
  92. 92.
    Brink JG, Hassoulas J. The first human heart transplant and further advances in cardiac transplantation at Groote Schuur Hospital and the University of Cape Town. Cardiovasc J Afr 2009; 20(1): 31–35Google Scholar
  93. 93.
    Leese HJ, Whittall H. Regulation of the transition from research to clinical practice in human assisted conception. Hum Fertil (Camb) 2001; 4(3): 172–176Google Scholar
  94. 94.
    Jones BP, Williams NJ, Saso S, Thum MY, Quiroga I, Yazbek J, Wilkinson S, Ghaem-Maghami S, Thomas P, Smith JR. Uterine transplantation in transgender women. BJOG 2019; 126(2): 152–156Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mara Simopoulou
    • 1
    • 2
    Email author
  • Konstantinos Sfakianoudis
    • 3
  • Petroula Tsioulou
    • 1
  • Anna Rapani
    • 1
  • Polina Giannelou
    • 1
    • 3
  • Nikolaos Kiriakopoulos
    • 1
  • Agni Pantou
    • 3
  • Nikolaos Vlahos
    • 1
  • George Anifandis
    • 4
  • Stamatis Bolaris
    • 5
  • Konstantinos Pantos
    • 3
  • Michael Koutsilieris
    • 1
  1. 1.Department of Physiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  2. 2.Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  3. 3.Centre for Human ReproductionGenesis Athens ClinicAthensGreece
  4. 4.Department of Histology and Embryology, Faculty of MedicineUniversity of ThessalyLarisaGreece
  5. 5.Assisted Conception UnitGeneral-Maternity District Hospital “Elena Venizelou”AthensGreece

Personalised recommendations