Advertisement

Autoimmunity in acute ischemic stroke and the role of blood-brain barrier: the dark side or the light one?

  • Nikolay V. Tsygan
  • Alexandr P. Trashkov
  • Igor V. Litvinenko
  • Viktoriya A. Yakovleva
  • Alexandr V. Ryabtsev
  • Andrey G. Vasiliev
  • Leonid P. ChurilovEmail author
Review

Abstract

This article presents a synopsis of the current data on the mechanisms of blood-brain barrier (BBB) alteration and autoimmune response in acute ischemic stroke. Most researchers confirm the relationship between the severity of immunobiochemical changes and clinical outcome of acute ischemic stroke. Ischemic stroke is accompanied by aseptic inflammation, which alters the brain tissue and exposes the co-stimulatory molecules of the immune system and the neuronal antigens. To date, BBB is not considered the border between the immune system and central nervous system, and the local immune subsystems are found within and behind the BBB. BBB disruption contributes to the leakage of brain autoantigens and induction of secondary autoimmune response to neuronal antigens and long-term inflammation. Glymphatic system function is altered and jeopardized both in hemorrhagic and ischemic stroke types. The receptors of innate immunity (toll-like receptor-2 and toll-like receptor-4) are also involved in acute ischemia-reperfusion injury. Immune response is related to the key processes of blood clotting and fibrinolysis. At the same time, the stroke-induced immune activation may promote reparation phenomena in the brain. Subsequent research on the reduction of the acute ischemic brain injury through the target regulation of the immune response is promising.

Keywords

stroke blood-brain barrier autoimmunity innate immunity inflammation cell death 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by the grant of the Government of the Russian Federation for the state support of scientific research carried out under the supervision of leading scientists, agreement 14.W03.31.0009, on the basis of SPbU project 15.34.3.2017.

References

  1. 1.
    Kim AS, Cahill E, Cheng NT. Global stroke belt: geographic variation in stroke burden worldwide. Stroke 2015; 46(12): 3564–3570CrossRefGoogle Scholar
  2. 2.
    Madsen TE, Khoury J, Alwell K, Moomaw CJ, Rademacher E, Flaherty ML, Woo D, De Los Rios La Rosa F, Martini S, Ferioli S, Adeoye O, Khatri P, Broderick JP, Kissela BM, Kleindorfer D. Sex-specific stroke incidence over time in the Greater Cincinnati/Northern Kentucky Stroke Study. Neurology 2017; 89(10): 990–996CrossRefGoogle Scholar
  3. 3.
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: a report from the american heart association. Circulation 2018; 137(12): e67–e492CrossRefGoogle Scholar
  4. 4.
    Ornello R, Degan D, Tiseo C, Di Carmine C, Perciballi L, Pistoia F, Carolei A, Sacco S. Distribution and temporal trends from 1993 to 2015 of ischemic stroke subtypes: a systematic review and metaanalysis. Stroke 2018; 49(4): 814–819CrossRefGoogle Scholar
  5. 5.
    Poletaev AB, Stepanyuk VL, Gershwin ME. Integrating immunity: the immunculus and self-reactivity. J Autoimmun 2008; 30(1–2): 68–73CrossRefGoogle Scholar
  6. 6.
    Konstantinova EV, Kochetov AG, Shostak NA, Shurdumova MK, Eremin II, Lyang OV, Skvortsova VI. Characteristics of immune response and inflammatory reaction in atherothrombotic stroke and myocardial infarction. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115(12 Pt 2): 48–53 (in Russian)CrossRefGoogle Scholar
  7. 7.
    Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck R, Schwaninger M, Engelhardt B, de Vries HE. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta 2016; 1862(3): 461–471CrossRefGoogle Scholar
  8. 8.
    Janyou A, Wicha P, Jittiwat J, Suksamrarn A, Tocharus C, Tocharus J. Dihydrocapsaicin attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory. Sci Rep 2017; 7(1): 10556CrossRefGoogle Scholar
  9. 9.
    Zhirnova IG, Maximova MYu, Komelkova LV, Varakin YuA, Bolotova TA. Immunological changes in acute ischemic stroke. Ann Clin Exp Neurology 2012; 6: 25–30 (in Russian)Google Scholar
  10. 10.
    Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 2015; 35(32): 11281–11291CrossRefGoogle Scholar
  11. 11.
    Zhou K, Shi L, Wang Y, Chen S, Zhang J. Recent advances of the NLRP3 inflammasome in central nervous system disorders. J Immunol Res 2016; 2016: 9238290Google Scholar
  12. 12.
    Ren X, Akiyoshi K, Grafe MR, Vandenbark AA, Hurn PD, Herson PS, Offner H. Myelin specific cells infiltrate MCAO lesions and exacerbate stroke severity. Metab Brain Dis 2012; 27(1): 7–15CrossRefGoogle Scholar
  13. 13.
    Becker K. Autoimmune responses to brain following stroke. Transl Stroke Res 2012; 3(3): 310–317CrossRefGoogle Scholar
  14. 14.
    Odinak MM, Voznyuk IA. Damage and protection of the blood brain barrier in ischemia. In: Petrischev NN. Endothelial Dysfunction. Causes, Mechanisms, Pharmacological Correction. St. Petersburg: Publishing House of Saint-Petersburg State Medical University, 2003: 146–171 (in Russian)Google Scholar
  15. 15.
    Berezhanskaya SB, Lukyanova EA, Zhavoronkova TE, Kaushanskaya EY, Sozaeva DI. The modern concept of blood-brain barrier structural-functional organization and basic mechanisms of its resistance disorder. Pediatria Zh im GN Speransky 2017; 96(1): 135–141 (in Russian)CrossRefGoogle Scholar
  16. 16.
    Dembi. Z. Immune system protects integrity of tissues. Mol Immunol 2000; 37(10): 563–569CrossRefGoogle Scholar
  17. 17.
    Roitt IM. Prevailing theories in autoimmune disorders. Triangle 1984; 23: 67–76Google Scholar
  18. 18.
    Aarli JA. The immune system and the nervous system. J Neurol 1983; 229(3): 137–154CrossRefGoogle Scholar
  19. 19.
    Shevelyov AS. Territorial problems of the immune system. Immunologiya 1991; 4: 68.72 (in Russian)Google Scholar
  20. 20.
    del Rio-Hortega P. Microglia. In: Penfield W. Cytology and Cellular Pathology of the Nervous System. vol. 2. New York: Hoeber, 1932: 483–534Google Scholar
  21. 21.
    Zweiman B, Levinson AI. Immunologic aspects of neurological and neuromuscular diseases. JAMA 1992; 268(20): 2918–2922CrossRefGoogle Scholar
  22. 22.
    Mori Y, Tomonaga D, Kalashnikova A, Furuya F, Akimoto N, Ifuku M, Okuno Y, Beppu K, Fujita K, Katafuchi T, Shimura H, Churilov LP, Noda M. Effects of 3,3′,5-triiodothyronine on microglial functions. Glia 2015; 63(5): 906–920CrossRefGoogle Scholar
  23. 23.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523(7560): 337.341CrossRefGoogle Scholar
  24. 24.
    Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: current understanding, significance and controversy. Front Neuroanat 2017; 11: 101CrossRefGoogle Scholar
  25. 25.
    Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep 2018; 8(1): 7194CrossRefGoogle Scholar
  26. 26.
    Tsygan NV, Odinak MM, Khubulava GG, Tsygan VN, Peleshok AS, Andreev RV, Kurasov ES, Litvinenko IV. Postoperative cerebral dysfunction. Zh Nevrol Psikhiatr Im S SKorsakova 2017; 117(4): 34–39 (in Russian)CrossRefGoogle Scholar
  27. 27.
    Zhang QY, Wang ZJ, Sun DM, Wang Y, Xu P, Wu WJ, Liu XH, Zhu YZ. Novel therapeutic effects of leonurine on ischemic stroke: new mechanisms of BBB integrity. Oxid Med Cell Longev 2017; 2017: 7150376Google Scholar
  28. 28.
    O’Connell GC, Treadway MB, Petrone AB, Tennant CS, Lucke-Wold N, Chantler PD, Barr TL. Peripheral blood AKAP7 expression as an early marker for lymphocyte-mediated post-stroke blood brain barrier disruption. Sci Rep 2017; 7(1): 1172CrossRefGoogle Scholar
  29. 29.
    Gubarev YD, Sheremet AO. The role of the immune system in the pathogenesis of acute and chronic ischemic damages of the brain. Sci Bull Belgorod State University 2009; 4: 47–52 (in Russian)Google Scholar
  30. 30.
    Ortega SB, Noorbhai I, Poinsatte K, Kong X, Anderson A, Monson NL, Stowe AM. Stroke induces a rapid adaptive autoimmune response to novel neuronal antigens. Discov Med 2015; 19(106): 381–392Google Scholar
  31. 31.
    Jin WN, Gonzales R, Feng Y, Wood K, Chai Z, Dong JF, La Cava A, Shi FD, Liu Q. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury. Stroke 2018; 49(6): 1471–1478CrossRefGoogle Scholar
  32. 32.
    Wang ZK, Xue L, Wang T, Wang XJ, Su ZQ. Infiltration of invariant natural killer T cells occur and accelerate brain infarction in permanent ischemic stroke in mice. Neurosci Lett 2016; 633: 62–68CrossRefGoogle Scholar
  33. 33.
    Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, Shi FD, Hao J. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci USA 2017; 114(3): E396–E405CrossRefGoogle Scholar
  34. 34.
    Gill D, Veltkamp R. Dynamics of T cell responses after stroke. Curr Opin Pharmacol 2016; 26: 26–32CrossRefGoogle Scholar
  35. 35.
    Zhang H, Park JH, Maharjan S, Park JA, Choi KS, Park H, Jeong Y, Ahn JH, Kim IH, Lee JC, Cho JH, Lee IK, Lee CH, Hwang IK, Kim YM, Suh YG, Won MH, Kwon YG. Sac-1004, a vascular leakage blocker, reduces cerebral ischemia-reperfusion injury by suppressing blood-brain barrier disruption and inflammation. J Neuroinflammation 2017; 14(1): 122CrossRefGoogle Scholar
  36. 36.
    Venkat P, Chopp M, Chen J. Blood-brain barrier disruption, vascular impairment, and ischemia/reperfusion damage in diabetic stroke. J Am Heart Assoc 2017; 6(6): e005819CrossRefGoogle Scholar
  37. 37.
    Kamel H, Iadecola C. Brain-immune interactions and ischemic stroke: clinical implications. Arch Neurol 2012; 69(5): 576–581CrossRefGoogle Scholar
  38. 38.
    Boyajyan AS, Arakelov EA, Ayvazyan VA, Manukyan LA. Interleukins and chemokins in acute ischemic stroke, burdened and not burdened by diabetes. Cytokines Inflammation 2008; 1: 40–43 (in Russian)Google Scholar
  39. 39.
    Tsygan VN, Bubnov VA, Tsygan NV, Zinovev EV, Ivchenko EV, Anichkov NM, Mirolyubov AV, Dergunov AV, Kazachenko AI. The innate immunity and activation of the atherogenesis. Voen Med Zh 2016; 337: 47–54 (in Russian)Google Scholar
  40. 40.
    Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007; 115(12): 1599–1608CrossRefGoogle Scholar
  41. 41.
    Broughton BRS, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke 2009; 40(5): e331–e339CrossRefGoogle Scholar
  42. 42.
    Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm 2010; 2010: 704202CrossRefGoogle Scholar
  43. 43.
    Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007; 184(1–2): 53–68CrossRefGoogle Scholar
  44. 44.
    Arumugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 2009; 158(3): 1074–1089CrossRefGoogle Scholar
  45. 45.
    Cheon SY, Kim EJ, Kim JM, Kam EH, Ko BW, Koo BN. Regulation of microglia and macrophage polarization via apoptosis signal-regulating kinase 1 silencing after ischemic/hypoxic injury. Front Mol Neurosci 2017; 10: 261CrossRefGoogle Scholar
  46. 46.
    Mizuma A, Yenari MA. Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol 2017; 8: 467CrossRefGoogle Scholar
  47. 47.
    Gee JM, Kalil A, Shea C, Becker KJ. Lymphocytes: potential mediators of postischemic injury and neuroprotection. Stroke 2007; 38(2Suppl): 783–788CrossRefGoogle Scholar
  48. 48.
    Li P, Wang L, Zhou Y, Gan Y, Zhu W, Xia Y, Jiang X, Watkins S, Vazquez A, Thomson AW, Chen J, Yu W, Hu X. C-C chemokine receptor type 5 (ccr5)-mediated docking of transferred tregs protects against early blood-brain barrier disruption after stroke. J Am Heart Assoc 2017; 6(8): e006387Google Scholar
  49. 49.
    Nalamolu KR, Smith NJ, Chelluboina B, Klopfenstein JD, Pinson DM, Wang DZ, Vemuganti R, Veeravalli KK. Prevention of the severity of post-ischemic inflammation and brain damage by simultaneous knockdown of Toll-like receptors 2 and 4. Neuroscience 2018; 373: 82–91CrossRefGoogle Scholar
  50. 50.
    Fadakar K, Dadkhahfar S, Esmaeili A, Rezaei N. The role of Toll-like receptors (TLRs) in stroke. Rev Neurosci 2014; 25(5): 699–712CrossRefGoogle Scholar
  51. 51.
    Yoles E, Hauben E, Palgi O, Agranov E, Gothilf A, Cohen A, Kuchroo V, Cohen IR, Weiner H, Schwartz M. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 2001; 21(11): 3740–3748CrossRefGoogle Scholar
  52. 52.
    Martiñón S, García E, Gutierrez-Ospina G, Mestre H, Ibarra A. Development of protective autoimmunity by immunization with a neural-derived peptide is ineffective in severe spinal cord injury. PLoS One 2012; 7(2): e32027CrossRefGoogle Scholar
  53. 53.
    Cruz Y, Lorea J, Mestre H, Kim-Lee JH, Herrera J, Mellado R, Gálvez V, Cuellar L, Musri C, Ibarra A. Copolymer-1 promotes neurogenesis and improves functional recovery after acute ischemic stroke in rats. PLoS One 2015; 10(3): e0121854CrossRefGoogle Scholar
  54. 54.
    Cruz Y, García EE, Gálvez JV, Arias-Santiago SV, Carvajal HG, Silva-García R, Bonilla-Jaime H, Rojas-Castañeda J, Ibarra A. Release of interleukin-10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer-1 immunization after cerebral ischemia. Neural Regen Res 2018; 13(10): 1743–1752CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH, Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nikolay V. Tsygan
    • 1
    • 2
  • Alexandr P. Trashkov
    • 1
    • 3
  • Igor V. Litvinenko
    • 2
  • Viktoriya A. Yakovleva
    • 2
  • Alexandr V. Ryabtsev
    • 2
  • Andrey G. Vasiliev
    • 4
  • Leonid P. Churilov
    • 5
    Email author
  1. 1.Department of Molecular and Radiation BiophysicsB.P. Konstantinov Petersburg Nuclear Physics InstituteGatchina, Leningrad RegionRussian Federation
  2. 2.Department of Nervous DiseasesS.M. Kirov Military Medical AcademySaint PetersburgRussian Federation
  3. 3.Department of Experimental PharmacologyI.M. Sechenov Institute of Evolutionary Physiology and BiochemistrySaint PetersburgRussian Federation
  4. 4.Department of Pathological Physiology with the Course of ImmunopathologySaint Petersburg State Pediatric Medical UniversitySaint PetersburgRussian Federation
  5. 5.Department of Pathology, Laboratory of the Mosaic of AutoimmunitySaint Petersburg State UniversitySaint PetersburgRussian Federation

Personalised recommendations