Genetic and clinical markers for predicting treatment responsiveness in rheumatoid arthritis

  • Xin Wu
  • Xiaobao Sheng
  • Rong Sheng
  • Hongjuan Lu
  • Huji XuEmail author


Although many drugs and therapeutic strategies have been developed for rheumatoid arthritis (RA) treatment, numerous patients with RA fail to respond to currently available agents. In this review, we provide an overview of the complexity of this autoimmune disease by showing the rapidly increasing number of genes associated with RA.We then systematically review various factors that have a predictive value (predictors) for the response to different drugs in RA treatment, especially recent advances. These predictors include but are certainly not limited to genetic variations, clinical factors, and demographic factors. However, no clinical application is currently available. This review also describes the challenges in treating patients with RA and the need for personalized medicine. At the end of this review, we discuss possible strategies to enhance the prediction of drug responsiveness in patients with RA.


rheumatoid arthritis gene clinical markers therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 31770988 and 31500716) and the National Basic Research Program (973 Program) of China (H. Xu, No. 2014CB541802).

Supplementary material

11684_2018_659_MOESM1_ESM.xlsx (86 kb)
Supplementary material, approximately 85.8 KB.


  1. 1.
    Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM,Wolfe F; National Arthritis DataWorkgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008; 58 (1): 26–35CrossRefGoogle Scholar
  2. 2.
    Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA, Pillemer SR, Reveille JD, Stone JH; National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 2008; 58 (1): 15–25CrossRefGoogle Scholar
  3. 3.
    Taylor PC, Feldmann M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5(10): 578–582CrossRefGoogle Scholar
  4. 4.
    Seymour HE, Worsley A, Smith JM, Thomas SH. Anti-TNF agents for rheumatoid arthritis. Br J Clin Pharmacol 2001; 51(3): 201–208CrossRefGoogle Scholar
  5. 5.
    Costa JO, Lemos LL, Machado MA, Almeida AM, Kakehasi AM, Araújo VE, Cherchiglia ML, Andrade EI, Acurcio FA. Infliximab, methotrexate and their combination for the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Rev Bras Reumatol 2015; 55(2): 146–158CrossRefGoogle Scholar
  6. 6.
    Scott LJ. Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs 2014; 74(12): 1379–1410CrossRefGoogle Scholar
  7. 7.
    Joshi P, Dhaneshwar SS. An update on disease modifying antirheumatic drugs. Inflamm Allergy Drug Targets 2014; 13(4): 249–261CrossRefGoogle Scholar
  8. 8.
    Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 2015; 43(Database issue): D213–D221CrossRefGoogle Scholar
  9. 9.
    Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-King J, Staines D, Derwent P, Kerhornou A, Kersey P, Flicek P. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011; 2011: bar030CrossRefGoogle Scholar
  10. 10.
    Okamoto H, Kobayashi A. Tyrosine kinases in rheumatoid arthritis. J Inflamm (Lond) 2011; 8(1): 21CrossRefGoogle Scholar
  11. 11.
    Opar A. Kinase inhibitors attract attention as oral rheumatoid arthritis drugs. Nat Rev Drug Discov 2010; 9(4): 257–258CrossRefGoogle Scholar
  12. 12.
    Vasanthi P, Nalini G, Rajasekhar G. Role of tumor necrosis factoralpha in rheumatoid arthritis: a review. APLAR J Rheumatol 2007; 10(4): 270–274CrossRefGoogle Scholar
  13. 13.
    Moelants EA, Mortier A, Van Damme J, Proost P. Regulation of TNF-a with a focus on rheumatoid arthritis. Immunol Cell Biol 2013; 91(6): 393–401CrossRefGoogle Scholar
  14. 14.
    Plant D, Wilson AG, Barton A. Genetic and epigenetic predictors of responsiveness to treatment in RA. Nat Rev Rheumatol 2014; 10(6): 329–337CrossRefGoogle Scholar
  15. 15.
    Barrera P, van der Maas A, van Ede AE, Kiemeney BA, Laan RF, van de Putte LB, van Riel PL. Drug survival, efficacy and toxicity of monotherapy with a fully human anti-tumour necrosis factor-a antibody compared with methotrexate in long-standing rheumatoid arthritis. Rheumatology (Oxford) 2002; 41(4): 430–439CrossRefGoogle Scholar
  16. 16.
    Saleem B, Keen H, Goeb V, Parmar R, Nizam S, Hensor EM, Churchman SM, Quinn M, Wakefield R, Conaghan PG, Ponchel F, Emery P. Patients with RA in remission on TNF blockers: when and in whom can TNF blocker therapy be stopped? Ann Rheum Dis 2010; 69(9): 1636–1642CrossRefGoogle Scholar
  17. 17.
    Bohanec Grabar P, Rozman B, Tomsic M, Suput D, Logar D, Dolzan V. Genetic polymorphism of CYP1A2 and the toxicity of leflunomide treatment in rheumatoid arthritis patients. Eur J Clin Pharmacol 2008; 64(9): 871–876CrossRefGoogle Scholar
  18. 18.
    Bohanec Grabar P, Grabnar I, Rozman B, Logar D, Tomsic M, Suput D, Trdan T, Peterlin Masic L, Mrhar A, Dolzan V. Investigation of the influence of CYP1A2 and CYP2C19 genetic polymorphism on 2-Cyano-3-hydroxy-N-[4-(trifluoromethyl)phenyl]-2-butenamide (A77 1726) pharmacokinetics in leflunomidetreated patients with rheumatoid arthritis. Drug Metab Dispos 2009; 37(10): 2061–2068CrossRefGoogle Scholar
  19. 19.
    Cañete JD, Suárez B, Hernández MV, Sanmartí R, Rego I, Celis R, Moll C, Pinto JA, Blanco FJ, Lozano F. Influence of variants of Fcγ receptors IIA and IIIA on the American College of Rheumatology and European League Against Rheumatism responses to antitumour necrosis factor a therapy in rheumatoid arthritis. Ann Rheum Dis 2009; 68(10): 1547–1552CrossRefGoogle Scholar
  20. 20.
    Morales-Lara MJ, Conesa-Zamora P, García-Simón MS, Pedrero F, Santaclara V, Perez-Guillermo M, Soriano-Navarro E. Association between the FCGR3A V158F polymorphism and the clinical response to infliximab in rheumatoid arthritis and spondyloarthritis patients. Scand J Rheumatol 2010; 39(6): 518–520CrossRefGoogle Scholar
  21. 21.
    Rizzo R, Rubini M, Govoni M, Padovan M, Melchiorri L, Stignani M, Carturan S, Ferretti S, Trotta F, Baricordi OR. HLA-G 14-bp polymorphism regulates the methotrexate response in rheumatoid arthritis. Pharmacogenet Genomics 2006; 16(9): 615–623CrossRefGoogle Scholar
  22. 22.
    Baricordi OR, Govoni M, Rizzo R, Trotta F. In rheumatoid arthritis, a polymorphism in the HLA-G gene concurs in the clinical response to methotrexate treatment. Ann Rheum Dis 2007; 66(8): 1125–1126CrossRefGoogle Scholar
  23. 23.
    Stamp LK, O’Donnell JL, Chapman PT, Barclay ML, Kennedy MA, Frampton CM, Roberts RL. Lack of association between HLA-G 14 bp insertion/deletion polymorphism and response to long-term therapy with methotrexate response in rheumatoid arthritis. Ann Rheum Dis 2009; 68(1): 154–155CrossRefGoogle Scholar
  24. 24.
    Fabris M, Quartuccio L, Lombardi S, Saracco M, Atzeni F, Carletto A, Cimmino M, Fabro C, Pontarini E, Pellerito R, Bambara LM, Sarzi-Puttini P, Cutolo M, Manfredi M, Benucci M, Morassi P, Fischetti F, Padovan M, Govoni M, Curcio F, Tonutti E, De Vita S. The CC homozygosis of the–174G > C IL-6 polymorphism predicts a lower efficacy of rituximab therapy in rheumatoid arthritis. Autoimmun Rev 2012; 11(5): 315–320CrossRefGoogle Scholar
  25. 25.
    Schotte H, Schlüter B, Drynda S, Willeke P, Tidow N, Assmann G, Domschke W, Kekow J, Gaubitz M. Interleukin 10 promoter microsatellite polymorphisms are associated with response to long term treatment with etanercept in patients with rheumatoid arthritis. Ann Rheum Dis 2005; 64(4): 575–581CrossRefGoogle Scholar
  26. 26.
    Hughes LB, Beasley TM, Patel H, Tiwari HK, Morgan SL, Baggott JE, Saag KG, McNicholl J, Moreland LW, Alarcón GS, Bridges SL Jr. Racial or ethnic differences in allele frequencies of singlenucleotide polymorphisms in the methylenetetrahydrofolate reductase gene and their influence on response to methotrexate in rheumatoid arthritis. Ann Rheum Dis 2006; 65(9): 1213–1218CrossRefGoogle Scholar
  27. 27.
    Kim SK, Jun JB, El-Sohemy A, Bae SC. Cost-effectiveness analysis of MTHFR polymorphism screening by polymerase chain reaction in Korean patients with rheumatoid arthritis receiving methotrexate. J Rheumatol 2006; 33(7): 1266–1274Google Scholar
  28. 28.
    Cáliz R, del Amo J, Balsa A, Blanco F, Silva L, Sanmarti R, Martínez FG, Collado MD, Ramirez MC, Tejedor D, Artieda M, Pascual-Salcedo D, Oreiro N, Andreu JL, Graell E, Simon L, Martínez A, Mulero J. The C677T polymorphism in the MTHFR gene is associated with the toxicity of methotrexate in a Spanish rheumatoid arthritis population. Scand J Rheumatol 2012; 41(1): 10–14CrossRefGoogle Scholar
  29. 29.
    Inoue S, Hashiguchi M, Takagi K, Kawai S, Mochizuki M. Preliminary study to identify the predictive factors for the response to methotrexate therapy in patients with rheumatoid arthritis. Yakugaku Zasshi 2009; 129(7): 843–849CrossRefGoogle Scholar
  30. 30.
    Takatori R, Takahashi KA, Tokunaga D, Hojo T, Fujioka M, Asano T, Hirata T, Kawahito Y, Satomi Y, Nishino H, Tanaka T, Hirota Y, Kubo T. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol 2006; 24(5): 546–554Google Scholar
  31. 31.
    Cuchacovich M, Soto L, Edwardes M, Gutierrez M, Llanos C, Pacheco D, Sabugo F, Alamo M, Fuentealba C, Villanueva L, Gatica H, Schiattino I, Salazaro L, Catalan D, Valenzuela O, Salazar-Onfray F, Aguillón JC. Tumour necrosis factor (TNF)α–308 G/G promoter polymorphism and TNFa levels correlate with a better response to adalimumab in patients with rheumatoid arthritis. Scand J Rheumatol 2006; 35(6): 435–440CrossRefGoogle Scholar
  32. 32.
    Stojanovic S, Jevtovic-Stoimenov T, Stankovic A, Pavlovic D, Nekovic J, Stamenkovic B, Dimic A, Marinkovic M. Association of TNF-α polymorphism (–308 A/G) with high activity of rheumatoid arthritis and therapy response to Etanercept. Srp Arh Celok Lek 2011; 139(11-12): 784–789 (in Serbian)CrossRefGoogle Scholar
  33. 33.
    Fabris M, Di Poi E, Sacco S, Damante G, Sinigaglia L, Ferraccioli G. TNF-α gene polymorphisms in rheumatoid arthritis patients treated with anti-TNF-a agents: preliminary results. Reumatismo 2002; 54(1): 19–26 (in Italian)Google Scholar
  34. 34.
    Lee YH, Ji JD, Bae SC, Song GG. Associations between tumor necrosis factor-α (TNF-α)–308 and–238 G/A polymorphisms and shared epitope status and responsiveness to TNF-a blockers in rheumatoid arthritis: a metaanalysis update. J Rheumatol 2010; 37 (4): 740–746CrossRefGoogle Scholar
  35. 35.
    Rooryck C, Barnetche T, Richez C, Laleye A, Arveiler B, Schaeverbeke T. Influence of FCGR3A-V212F and TNFRSF1BM196R genotypes in patients with rheumatoid arthritis treated with infliximab therapy. Clin Exp Rheumatol 2008; 26(2): 340–342Google Scholar
  36. 36.
    Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J, Ariail KS, Keener CL, Li S, Liu H, Farin FM, Potter JD. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 2001; 98(1): 231–234CrossRefGoogle Scholar
  37. 37.
    Grabar PB, Rozman B, Logar D, Praprotnik S, Dolzan V. Dihydroorotate dehydrogenase polymorphism influences the toxicity of leflunomide treatment in patients with rheumatoid arthritis. Ann Rheum Dis 2009; 68(8): 1367–1368CrossRefGoogle Scholar
  38. 38.
    Rath E, Zwerina J, Oppl B, Nell-Duxneuner V. Efficacy and safety of rituximab in rheumatic diseases. Wien Med Wochenschr 2015; 165(1-2): 28–35CrossRefGoogle Scholar
  39. 39.
    Taylor PC, Williams RO. Combination cytokine blockade: the way forward in therapy for rheumatoid arthritis? Arthritis Rheumatol 2015; 67(1): 14–16CrossRefGoogle Scholar
  40. 40.
    van Baarsen LG, Wijbrandts CA, Rustenburg F, Cantaert T, van der Pouw Kraan TC, Baeten DL, Dijkmans BA, Tak PP, Verweij CL. Regulation of IFN response gene activity during infliximab treatment in rheumatoid arthritis is associated with clinical response to treatment. Arthritis Res Ther 2010; 12(1): R11CrossRefGoogle Scholar
  41. 41.
    de Jong TD, Vosslamber S, Blits M, Wolbink G, Nurmohamed MT, van der Laken CJ, Jansen G, Voskuyl AE, Verweij CL. Effect of prednisone on type I interferon signature in rheumatoid arthritis: consequences for response prediction to rituximab. Arthritis Res Ther 2015; 17(1): 78CrossRefGoogle Scholar
  42. 42.
    Rodríguez-Carrio J, López P, Suárez A. Type I IFNs as biomarkers in rheumatoid arthritis: towards disease profiling and personalized medicine. Clin Sci (Lond) 2015; 128(8): 449–464CrossRefGoogle Scholar
  43. 43.
    Jani M, Chinoy H, Warren RB. Em Griffiths C, Plant D, Fu B, Morgan AW, Wilson AG, Isaacs JD, Hyrich KL, Barton A; Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate Collaborators. Clinical utility of random anti-TNF drug level testing and measurement of anti-drug antibodies on long-term treatment response in rheumatoid arthritis. Arthritis Rheumatol 2015; 385(8): S48Google Scholar
  44. 44.
    Takeuchi T, Yamamoto K, Yamanaka H, Ishiguro N, Tanaka Y, Eguchi K, Watanabe A, Origasa H, Shoji T, Miyasaka N, Koike T. Early response to certolizumab pegol predicts long-term outcomes in patients with active rheumatoid arthritis: results from the Japanese studies. Mod Rheumatol 2015; 25(1): 11–20CrossRefGoogle Scholar
  45. 45.
    Blaschke S, Rinke K, Maring M, Flad T, Patschan S, Jahn O, Mueller CA, Mueller GA, Dihazi H. Haptoglobin-a1, -a2, vitamin D-binding protein and apolipoprotein C-III as predictors of etanercept drug response in rheumatoid arthritis. Arthritis Res Ther 2015; 17(1): 45CrossRefGoogle Scholar
  46. 46.
    Atzeni F, Bongiovanni S, Marchesoni A, Filippini M, Caporali R, Gorla R, Cavagna L, Favalli EG, Saccardo F, Sarzi-Puttini P. Predictors of response to anti-TNF therapy in RA patients with moderate or high DAS28 scores. Joint Bone Spine 2014; 81(1): 37–40CrossRefGoogle Scholar
  47. 47.
    Barnabe C, Homik J, Barr SG, Martin L, Maksymowych WP. The effect of different remission definitions on identification of predictors of both point and sustained remission in rheumatoid arthritis treated with anti-TNF therapy. J Rheumatol 2014; 41(8): 1607–1613CrossRefGoogle Scholar
  48. 48.
    Kristensen LE, Kapetanovic MC, Gülfe A, Söderlin M, Saxne T, Geborek P. Predictors of response to anti-TNF therapy according to ACR and EULAR criteria in patients with established RA: results from the South Swedish Arthritis Treatment Group Register. Rheumatology (Oxford) 2008; 47(4): 495–499CrossRefGoogle Scholar
  49. 49.
    Luban S, Li ZG. Citrullinated peptide and its relevance to rheumatoid arthritis: an update. Int J Rheum Dis 2010; 13(4): 284–287CrossRefGoogle Scholar
  50. 50.
    Pietrapertosa D, Tolusso B, Gremese E, Papalia MC, Bosello SL, Peluso G, Petricca L, Michelutti A, Faustini F, Fedele AL, Ferraccioli G. Diagnostic performance of anti-citrullinated peptide antibodies for the diagnosis of rheumatoid arthritis: the relevance of likelihood ratios. Clin Chem Lab Med 2010; 48(6): 829–834CrossRefGoogle Scholar
  51. 51.
    Narváez J, Díaz-Torné C, Ruiz JM, Hernandez MV, Torrente- Segarra V, Ros S, Rodriguez de la Serna A, Díaz-López C, Sanmartí R, Nolla JM. Predictors of response to rituximab in patients with active rheumatoid arthritis and inadequate response to anti-TNF agents or traditional DMARDs. Clin Exp Rheumatol 2011; 29(6): 991–997Google Scholar
  52. 52.
    Chara L, Sánchez-Atrio A, Pérez A, Cuende E, Albarrán F, Turrión A, Chevarria J, del Barco AA, Sánchez MA, Monserrat J, Prieto A, de la Hera A, Sanz I, Diaz D, Alvarez-Mon M. The number of circulating monocytes as biomarkers of the clinical response to methotrexate in untreated patients with rheumatoid arthritis. J Transl Med 2015; 13(1): 2CrossRefGoogle Scholar
  53. 53.
    Jutley G, Raza K, Buckley CD. New pathogenic insights into rheumatoid arthritis. Curr Opin Rheumatol 2015; 27(3): 249–255CrossRefGoogle Scholar
  54. 54.
    Johannsen A, Susin C, Gustafsson A. Smoking and inflammation: evidence for a synergistic role in chronic disease. Periodontol 2000 2014; 64(1): 111–126CrossRefGoogle Scholar
  55. 55.
    Scott IC, Tan R, Stahl D, Steer S, Lewis CM, Cope AP. The protective effect of alcohol on developing rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology (Oxford) 2013; 52(5): 856–867CrossRefGoogle Scholar
  56. 56.
    Hyrich KL, Watson KD, Silman AJ, Symmons DP; British Society for Rheumatology Biologics Register. Predictors of response to anti- TNFa therapy among patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. Rheumatology (Oxford) 2006; 45(12): 1558–1565CrossRefGoogle Scholar
  57. 57.
    Lin C, Karlson EW, Canhao H, Miller TA, Dligach D, Chen PJ, Perez RN, Shen Y, Weinblatt ME, Shadick NA, Plenge RM, Savova GK. Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records. PLoS One 2013; 8(8): e69932CrossRefGoogle Scholar
  58. 58.
    Sieberts SK, Zhu F, García-García J, Stahl E, Pratap A, Pandey G, Pappas D, Aguilar D, Anton B, Bonet J, Eksi R, Fornés O, Guney E, Li H, Marín MA, Panwar B, Planas-Iglesias J, Poglayen D, Cui J, Falcao AO, Suver C, Hoff B, Balagurusamy VS, Dillenberger D, Neto EC, Norman T, Aittokallio T, Ammad-Ud-Din M, Azencott CA, Bellón V, Boeva V, Bunte K, Chheda H, Cheng L, Corander J, Dumontier M, Goldenberg A, Gopalacharyulu P, Hajiloo M, Hidru D, Jaiswal A, Kaski S, Khalfaoui B, Khan SA, Kramer ER, Marttinen P, Mezlini AM, Molparia B, Pirinen M, Saarela J, Samwald M, Stoven V, Tang H, Tang J, Torkamani A, Vert JP, Wang B, Wang T, Wennerberg K, Wineinger NE, Xiao G, Xie Y, Yeung R, Zhan X, Zhao C; Members of the Rheumatoid Arthritis Challenge Consortium, Greenberg J, Greenberg J, Kremer J, Michaud K, Barton A, Coenen M, Mariette X, Miceli C, Shadick N, Weinblatt M, de Vries N, Tak PP, Gerlag D, Huizinga TW, Kurreeman F, Allaart CF, Louis Bridges S Jr, Criswell L, Moreland L, Klareskog L, Saevarsdottir S, Padyukov L, Gregersen PK, Friend S, Plenge R, Stolovitzky G, Oliva B, Guan Y, Mangravite LM, Bridges SL, Criswell L, Moreland L, Klareskog L, Saevarsdottir S, Padyukov L, Gregersen PK, Friend S, Plenge R, Stolovitzky G, Oliva B, Guan Y, Mangravite LM. Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nat Commun 2016; 7: 12460CrossRefGoogle Scholar
  59. 59.
    Viatte S, Plant D, Han B, Fu B, Yarwood A, Thomson W, Symmons DP, Worthington J, Young A, Hyrich KL, Morgan AW, Wilson AG, Isaacs JD, Raychaudhuri S, Barton A. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 2015; 313(16): 1645–1656CrossRefGoogle Scholar
  60. 60.
    Takeuchi T, Miyasaka N, Tatsuki Y, Yano T, Yoshinari T, Abe T, Koike T. Inhibition of plasma IL-6 in addition to maintenance of an efficacious trough level of infliximab associated with clinical remission in patients with rheumatoid arthritis: analysis of the RISING Study. Ann Rheum Dis 2012; 71(9): 1583–1585CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xin Wu
    • 1
  • Xiaobao Sheng
    • 2
    • 3
  • Rong Sheng
    • 1
  • Hongjuan Lu
    • 1
  • Huji Xu
    • 1
    • 4
    • 5
    Email author
  1. 1.Department of Rheumatology and ImmunologyShanghai Changzheng Hospital, the Second Military Medical UniversityShanghaiChina
  2. 2.School of Economics and ManagementTongji UniversityShanghaiChina
  3. 3.The Third Research Institute of the Ministry of Public SecurityShanghaiChina
  4. 4.Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
  5. 5.Peking-Tsinghua Center for Life SciencesTsinghua UniversityBeijingChina

Personalised recommendations