Frontiers of Medicine

, Volume 12, Issue 6, pp 608–623 | Cite as

Bile acids and their effects on diabetes

  • Cynthia Rajani
  • Wei JiaEmail author


Diabetes is a widespread, rapidly increasing metabolic disease that is driven by hyperglycemia. Early glycemic control is of primary importance to avoid vascular complications including development of retinal disorders leading to blindness, end-stage renal disease, and accelerated atherosclerosis with a higher risk of myocardial infarction, stroke and limb amputations. Even after hyperglycemia has been brought under control, “metabolic memory,” a cluster of irreversible metabolic changes that allow diabetes to progress, may persist depending on the duration of hyperglycemia. Manipulation of bile acid (BA) receptors and the BA pool have been shown to be useful in establishing glycemic control in diabetes due to their ability to regulate energy metabolism by binding and activating nuclear transcription factors such as farnesoid X receptor (FXR) in liver and intestine as well as the G-protein coupled receptor, TGR5, in enteroendocrine cells and pancreatic β-cells. The downstream targets of BA activated FXR, FGF15/21, are also important for glucose/insulin homeostasis. In this review we will discuss the effect of BAs on glucose and lipid metabolism and explore recent research on establishing glycemic control in diabetes through the manipulation of BAs and their receptors in the liver, intestine and pancreas, alteration of the enterohepatic circulation, bariatric surgery and alignment of circadian rhythms.


bile acids metabolic memory diabetes circadian rhythm bariatric surgery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the grant from International Science and Technology Cooperation Program of China (No. 2014DFA31870).


  1. 1.
    Abramowicz M, Zuccotti G. Drugs for diabetes. Treat Guidel Med Lett 2005; 3(36): 57–62Google Scholar
  2. 2.
    Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vascul Pharmacol 2012; 57(5-6): 133–138Google Scholar
  3. 3.
    Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008; 57(5): 1349–1354Google Scholar
  4. 4.
    Ceriello A, Esposito K, Ihnat M, Thorpe J, Giugliano D. Long-term glycemic control influences the long-lasting effect of hyperglycemia on endothelial function in type 1 diabetes. J Clin Endocrinol Metab 2009; 94(8): 2751–2756Google Scholar
  5. 5.
    Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353(25): 2643–2653Google Scholar
  6. 6.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–820Google Scholar
  7. 7.
    Foufelle F, Ferré P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002; 366(Pt 2): 377–391Google Scholar
  8. 8.
    Banerjee PS, Lagerlöf O, Hart GW. Roles of O-GlcNAc in chronic diseases of aging. Mol Aspects Med 2016; 51: 1–15Google Scholar
  9. 9.
    Hanssen NM, Beulens JW, van Dieren S, Scheijen JL, van der A DL, Spijkerman AM, van der Schouw YT, Stehouwer CD, Schalkwijk CG. Plasma advanced glycation end products are associated with incident cardiovascular events in individuals with type 2 diabetes: a case-cohort study with a median follow-up of 10 years (EPIC-NL). Diabetes 2015; 64(1): 257–265Google Scholar
  10. 10.
    Guinez C, Filhoulaud G, Rayah-Benhamed F, Marmier S, Dubuquoy C, Dentin R, Moldes M, Burnol AF, Yang X, Lefebvre T, Girard J, Postic C. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011; 60 (5): 1399–1413Google Scholar
  11. 11.
    Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014; 66(4): 948–983Google Scholar
  12. 12.
    Kong B, Wang L, Chiang JY, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 2012; 56(3): 1034–1043Google Scholar
  13. 13.
    Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7(8): 678–693Google Scholar
  14. 14.
    Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83(2): 633–671Google Scholar
  15. 15.
    Zhang YK, Guo GL, Klaassen CD. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS One 2011; 6(2): e16683Google Scholar
  16. 16.
    Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47(2): 241–259Google Scholar
  17. 17.
    Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res 2009; 50(12): 2340–2357Google Scholar
  18. 18.
    Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol 2002; 64(1): 635–661Google Scholar
  19. 19.
    Lan T, Morgan DA, Rahmouni K, Sonoda J, Fu X, Burgess SC, Holland WL, Kliewer SA, Mangelsdorf DJ. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab 2017; 26(5): 709–718.e3Google Scholar
  20. 20.
    Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 2010; 59(11): 2697–2707Google Scholar
  21. 21.
    Chung ST, Hsia DS, Chacko SK, Rodriguez LM, Haymond MW. Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes. Diabetologia 2015; 58(3): 596–603Google Scholar
  22. 22.
    Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, Fukamizu A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 2004; 279(22): 23158–23165Google Scholar
  23. 23.
    Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 2012; 56(4): 952–964Google Scholar
  24. 24.
    Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 2005; 87(1): 81–86Google Scholar
  25. 25.
    Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARa-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 2003; 38(1): 123–132Google Scholar
  26. 26.
    Denechaud PD, Dentin R, Girard J, Postic C. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett 2008; 582(1): 68–73Google Scholar
  27. 27.
    Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 2006; 103(4): 1006–1011Google Scholar
  28. 28.
    Gonzalez FJ, Jiang C, Patterson AD. An Intestinal microbiotafarnesoid X receptor axis modulates metabolic disease. Gastroenterology 2016; 151(5): 845–859Google Scholar
  29. 29.
    Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM, Mauer J, Xu E, Hammerschmidt P, Brönneke HS, Trifunovic A, LoSasso G, Wunderlich FT, Kornfeld JW, Blüher M, Krönke M, Brüning JC. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 2014; 20(4): 678–686Google Scholar
  30. 30.
    Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH, Liu Y, Gavrilova O, Patterson AD, Gonzalez FJ. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 2015; 6(1): 10166Google Scholar
  31. 31.
    Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013; 4(1): 2384Google Scholar
  32. 32.
    Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331(6024): 1621–1624Google Scholar
  33. 33.
    Stefano GB, Challenger S, Kream RM. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr 2016; 55(8): 2339–2345Google Scholar
  34. 34.
    Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinasemediated insulin signaling by O-linked β-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem 2010; 285(8): 5204–5211Google Scholar
  35. 35.
    Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P, Hart GW. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008; 283(24): 16283–16292Google Scholar
  36. 36.
    Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM,Wade M, Singhal E, Cheng CC, Volk K, Kuo MS, Gordillo R, Kharitonenkov A, Scherer PE. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 2013; 17(5): 790–797Google Scholar
  37. 37.
    Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem 2011; 286(40): 34533–34541Google Scholar
  38. 38.
    Copple BL, Li T. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 2016; 104: 9–21Google Scholar
  39. 39.
    Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care 2003; 26(3): 881–885Google Scholar
  40. 40.
    Sonne DP, van Nierop FS, Kulik W, Soeters MR, Vilsbøll T, Knop FK. Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with type 2 diabetes. J Clin Endocrinol Metab 2016; 101(8): 3002–3009Google Scholar
  41. 41.
    Mueller M, Thorell A, Claudel T, Jha P, Koefeler H, Lackner C, Hoesel B, Fauler G, Stojakovic T, Einarsson C, Marschall HU, Trauner M. Ursodeoxycholic acid exerts farnesoid X receptorantagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 2015; 62(6): 1398–1404Google Scholar
  42. 42.
    Goto T, Hirata M, Aoki Y, Iwase M, Takahashi H, Kim M, Li Y, Jheng HF, Nomura W, Takahashi N, Kim CS, Yu R, Seno S, Matsuda H, Aizawa-Abe M, Ebihara K, Itoh N, Kawada T. The hepatokine FGF21 is crucial for peroxisome proliferator-activated receptor-α agonist-induced amelioration of metabolic disorders in obese mice. J Biol Chem 2017; 292(22): 9175–9190Google Scholar
  43. 43.
    Reitman ML, Gavrilova O. A-ZIP/F-1 mice lacking white fat: a model for understanding lipoatrophic diabetes. Int J Obes Relat Metab Disord 2000; 24 (Suppl 4): S11–14Google Scholar
  44. 44.
    Katafuchi T, Esterházy D, Lemoff A, Ding X, Sondhi V, Kliewer SA, Mirzaei H, Mangelsdorf DJ. Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry. Cell Metab 2015; 21(6): 898–904Google Scholar
  45. 45.
    Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, Kliewer SA, Mangelsdorf DJ. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 2014; 20(4): 670–677Google Scholar
  46. 46.
    Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest 2015; 125(3): 908–917Google Scholar
  47. 47.
    van Nierop FS, Scheltema MJ, Eggink HM, Pols TW, Sonne DP, Knop FK, Soeters MR. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol 2017; 5(3): 224–233Google Scholar
  48. 48.
    Hauge M, Ekberg JP, Engelstoft MS, Timshel P, Madsen AN, Schwartz TW. Gq and Gs signaling acting in synergy to control GLP-1 secretion. Mol Cell Endocrinol 2017; 449: 64–73Google Scholar
  49. 49.
    Vettorazzi JF, Ribeiro RA, Borck PC, Branco RC, Soriano S, Merino B, Boschero AC, Nadal A, Quesada I, Carneiro EM. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic β cells. Metabolism 2016; 65 (3): 54–63Google Scholar
  50. 50.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10(3): 167–177Google Scholar
  51. 51.
    Miyamoto J, Hasegawa S, Kasubuchi M, Ichimura A, Nakajima A, Kimura I. Nutritional signaling via free fatty acid receptors. Int J Mol Sci 2016; 17(4): 450Google Scholar
  52. 52.
    Meloni AR, DeYoung MB, Lowe C, Parkes DG. GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obes Metab 2013; 15(1): 15–27Google Scholar
  53. 53.
    Insull W Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J 2006; 99(3): 257–273Google Scholar
  54. 54.
    Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol 2014; 171(2): R47–R65Google Scholar
  55. 55.
    Potthoff MJ, Potts A, He T, Duarte JA, Taussig R, Mangelsdorf DJ, Kliewer SA, Burgess SC. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 2013; 304(4): G371–G380Google Scholar
  56. 56.
    Harach T, Pols TW, Nomura M, Maida A, Watanabe M, Auwerx J, Schoonjans K. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep 2012; 2(1): 430Google Scholar
  57. 57.
    Mazidi M, Rezaie P, Karimi E, Kengne AP. The effects of bile acid sequestrants on lipid profile and blood glucose concentrations: a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol 2017; 227: 850–857Google Scholar
  58. 58.
    Hansen M, Sonne DP, Mikkelsen KH, Gluud LL, Vilsbøll T, Knop FK. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: a systematic review with meta-analysis of randomized controlled trials. J Diabetes Complications 2017; 31(5): 918–927Google Scholar
  59. 59.
    Chen L, Yao X, Young A, McNulty J, Anderson D, Liu Y, Nystrom C, Croom D, Ross S, Collins J, Rajpal D, Hamlet K, Smith C, Gedulin B. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol Endocrinol Metab 2012; 302(1): E68–E76Google Scholar
  60. 60.
    Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B 2015; 5 (2): 129–134Google Scholar
  61. 61.
    McGavigan AK, Garibay D, Henseler ZM, Chen J, Bettaieb A, Haj FG, Ley RE, Chouinard ML, Cummings BP. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 2017; 66(2): 226–234Google Scholar
  62. 62.
    Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12a-hydroxylated bile acids. Diabetes 2013; 62(12): 4184–4191Google Scholar
  63. 63.
    Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 2017; 39: 59–67Google Scholar
  64. 64.
    Froy O. Circadian aspects of energy metabolism and aging. Ageing Res Rev 2013; 12(4): 931–940Google Scholar
  65. 65.
    Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J, Wang M, Han X, Asher G. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 2014; 19(2): 319–330Google Scholar
  66. 66.
    Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab 2014; 3(4): 372–383Google Scholar
  67. 67.
    Ribas-Latre A, Eckel-Mahan K. Interdependence of nutrient metabolism and the circadian clock system: importance for metabolic health. Mol Metab 2016; 5(3): 133–152Google Scholar
  68. 68.
    Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Lo Sasso G, Moschetta A, Schibler U. REV-ERBa participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 2009; 7(9): e1000181Google Scholar
  69. 69.
    Pathak P, Li T, Chiang JY. Retinoic acid-related orphan receptor a regulates diurnal rhythm and fasting induction of sterol 12a-hydroxylase in bile acid synthesis. J Biol Chem 2013; 288(52): 37154–37165Google Scholar
  70. 70.
    Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010; 330(6009): 1349–1354Google Scholar
  71. 71.
    Wada E, Koyanagi S, Kusunose N, Akamine T, Masui H, Hashimoto H, Matsunaga N, Ohdo S. Modulation of peroxisome proliferator-activated receptor-a activity by bile acids causes circadian changes in the intestinal expression of Octn1/Slc22a4 in mice. Mol Pharmacol 2015; 87(2): 314–322Google Scholar
  72. 72.
    Ferrell JM, Chiang JY. Short-term circadian disruption impairs bile acid and lipid homeostasis in mice. Cell Mol Gastroenterol Hepatol 2015; 1(6):664–677Google Scholar
  73. 73.
    Lis CG, Grutsch JF, Wood P, You M, Rich I, Hrushesky WJ. Circadian timing in cancer treatment: the biological foundation for an integrative approach. Integr Cancer Ther 2003; 2(2): 105–111Google Scholar
  74. 74.
    Zhang YK, Yeager RL, Klaassen CD. Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab Dispos 2009; 37(1): 106–115Google Scholar
  75. 75.
    Sinal CJ, Yoon M, Gonzalez FJ. Antagonism of the actions of peroxisome proliferator-activated receptor-α by bile acids. J Biol Chem 2001; 276(50): 47154–47162Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Hawaii Cancer CenterHonoluluUSA
  2. 2.Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational MedicineShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina

Personalised recommendations