Basal ganglia lateralization in different types of reward

  • Marie ArsalidouEmail author
  • Sagana Vijayarajah
  • Maksim Sharaev
Original Research


Reward processing is a fundamental human activity. The basal ganglia are recognized for their role in reward processes; however, specific roles of the different nuclei (e.g., nucleus accumbens, caudate, putamen and globus pallidus) remain unclear. Using quantitative meta-analyses we assessed whole-brain and basal ganglia specific contributions to money, erotic, and food reward processing. We analyzed data from 190 fMRI studies which reported stereotaxic coordinates of whole-brain, within-group results from healthy adult participants. Results showed concordance in overlapping and distinct cortical and sub-cortical brain regions as a function of reward type. Common to all reward types was concordance in basal ganglia nuclei, with distinct differences in hemispheric dominance and spatial extent in response to the different reward types. Food reward processing favored the right hemisphere; erotic rewards favored the right lateral globus pallidus and left caudate body. Money rewards engaged the basal ganglia bilaterally including its most anterior part, nucleus accumbens. We conclude by proposing a model of common reward processing in the basal ganglia and separate models for money, erotic, and food rewards.


Rewards fMRI Meta-analyses Striatum Basal ganglia 



We gratefully acknowledge support from the Russian Science Foundation #17-18-01047 to MA. MS was supported by Skolkovo Biomedical Initiative and Russian Foundation for Basic Research according to the research project № 17-29-02518 (mathematical modeling of brain connectivity).

Compliance with ethical standards

Conflict of interest

Authors have no conflict of interest to declare.


  1. Abe, N., & Greene, J. D. (2014). Response to Anticipated Reward in the Nucleus Accumbens Predicts Behavior in an Independent Test of Honesty. J Neurosci, 34, 10564–10572.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abler, B., Erk, S., & Walter, H. (2007). Human reward system activation is modulated by a single dose of olanzapine in healthy subjects in an event-relateD., double-blinD., placebo-controlledGoogle Scholar
  3. Addis, D. R., Pan, L., Vu, M. A., Laiser, N., & Schacter, D. L. (2009). Constructive episodic simulation of the future and the past: Distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia, 47(11), 2222–2238. Scholar
  4. Anderson, E. J., Jones, D. K., O’Gorman, R. L., Leemans, A., Catani, M., & Husain, M. (2012). Cortical network for gaze control in humans revealed using multimodal MRI. Cerebral Cortex, 22(4), 765–775. Scholar
  5. Andrews, M. M., Meda, S. A., Thomas, A. D., Potenza, M. N., Krystal, J. H., Worhunsky, P., Stevens, M. C., O’Malley, S., Book, G. A., Reynolds, B., & Pearlson, G. D. (2011). Individuals family history positive for alcoholism show functional magnetic resonance imaging differences in reward sensitivity that are related to impulsivity factors. Biol Psychiatry, 69, 675–683. Scholar
  6. Aoki, R., Matsumoto, M., Yomogida, Y., Izuma, K., Murayama, K., Sugiura, A., Camerer, C. F., Adolphs, R., & Matsumoto, K. (2014). Social equality in the number of choice options is represented in the ventromedial prefrontal cortex. J Neurosci, 34, 6413–6421.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arsalidou, M., Duerden, E. G., & Taylor, M. J. (2013). The Centre of the brain: Topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Human Brain Mapping, 34(11), 3031–3054. Scholar
  8. Arsalidou, M., Morris, D., & Taylor, M. J. (2011). Converging evidence for the advantage of dynamic facial expressions. Brain Topography, 24(2), 149–163. Scholar
  9. Arsalidou, M., & Pascual-Leone, J. (2016). Constructivist developmental theory is needed in developmental neuroscience. npj Science of Learning, 14(1), 16016. Scholar
  10. Asensio, S., Romero, M. J., Palau, C., Sanchez, A., Senabre, I., Morales, J. L., Carcelen, R., & Romero, F. J. (2010). Altered neural response of the appetitive emotional system in cocaine addiction: An fMRI Study. Addict Biol, 15, 504–516.PubMedCrossRefGoogle Scholar
  11. Bar, M. (2010). Wait for the second marshmallow? Future-oriented thinking and delayed reward discounting in the brain. NeuroN., 66(1), 4–5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barman, A., Richter, S., Soch, J., Deibele, A., Richter, A., Assmann, A., Wüstenberg, T., Walter, H., Seidenbecher, C. I., & Schott, B. H. (2015). Gender-specific modulation of neural mechanisms underlying social reward processing by Autism Quotient. Soc Cogn Affect Neurosci, 10, 1537–1547.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barrós-Loscertales, A., Ventura-Campos, N., Sanjuán-Tomás, A., Belloch, V., Parcet, M. A., & Ávila, C. (2010). Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing. Social cognitive and affective neurosciencE., 5(1), 18–28.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2008). Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain, 131(3), 829–841. Scholar
  15. Beauregard, M., Lévesque, J., & Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. J Neurosci, 21, RC165.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability Modulates Human Brain Response to Reward. J Neurosci, 21, 2793–2798.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bianchi-Demicheli, F., Cojan, Y., Waber, L., Recordon, N., Vuilleumier, P., & Ortigue, S. (2011). Neural Bases of Hypoactive Sexual Desire Disorder in Women: An Event-Related fMRI Study. J Sex Med, 8, 2546–2559.PubMedCrossRefGoogle Scholar
  18. Bianciardi, M., Toschi, N., Eichner, C., Polimeni, J. R., Setsompop, K., Brown, E. N., Hämäläinen, M. S., Rosen, B. R., & Wald, L. L. (2016). In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-tesla fMRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 29(3), 451–462. Scholar
  19. Bjork, J. M. (2004). Incentive-Elicited Brain Activation in Adolescents: Similarities and Differences from Young Adults. J Neurosci, 24, 1793–1802.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bjork, J. M., Smith, A. R., & Hommer, D. W. (2008). Striatal sensitivity to reward deliveries and omissions in substance dependent patients. NeuroimagE., 42(4), 1609–1621.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bjork, J.M., Smith, A.R., Chen, G., & Hommer, D.W. (2010). AdolescentS., adults and rewards: Comparing motivational neurocircuitry recruitment using fMRI. PLoS One, 5.Google Scholar
  22. Bjork, J. M., Smith, A. R., Chen, G., & Hommer, D. W. (2012). Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: Effort anticipatioN., reward anticipatioN., and reward delivery. Hum Brain Mapp, 33, 2174–2188.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boecker, R., Holz, N. E., Buchmann, A. F., Blomeyer, D., Plichta, M. M., Wolf, I., Baumeister, S., Meyer-Lindenberg, A., Banaschewski, T., Brandeis, D., & Laucht, M. (2014). Impact of early life adversity on reward processing in young adults: EEG-fMRI results from a prospective study over 25 years. PLoS One, 9, 1–13.CrossRefGoogle Scholar
  24. Borg C., Georgiadis J.R., Renken R.J., Spoelstra S.K., Schultz W.W., & De Jong P.J. (2014a). Brain processing of visual stimuli representing sexual penetration versus core and animal-reminder disgust in women with lifelong vaginismus. PLoS One, 9.Google Scholar
  25. Borg, C., de Jong, P. J., & Georgiadis, J. R. (2014b). Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women. Soc Cogn Affect Neurosci, 9, 158–166.PubMedCrossRefGoogle Scholar
  26. Bothe, N., Zschucke, E., Dimeo, F., Heinz, A., Wüstenberg, T., & Ströhle, A. (2013). Acute exercise influences reward processing in highly trained and untrained men. Med Sci Sports Exerc, 45, 583–591.PubMedCrossRefGoogle Scholar
  27. Botzung, A., Denkova, E., & Manning, L. (2008). Experiencing past and future personal events: Functional neuroimaging evidence on the neural bases of mental time travel. Brain and Cognition, 66(2), 202–212. Scholar
  28. Braams, B. R., Güroǧlu, B., de water, E., Meuwese, R., Koolschijn, P. C., Peper, J. S., & Crone, E. A. (2014). Reward-related neural responses are dependent on the beneficiary. Soc Cogn Affect Neurosci, 9, 1030–1037.PubMedCrossRefGoogle Scholar
  29. Brunetti, M., Babiloni, C., Ferretti, A., Del Gratta, C., Merla, A., Olivetti, B. M., & Romani, G. L. (2008). HypothalamuS., sexual arousal and psychosexual identity in human males: A functional magnetic resonance imaging study. Eur J Neurosci, 27, 2922–2927.PubMedCrossRefGoogle Scholar
  30. Bühler, M., Vollstädt-Klein, S., Klemen, J., & Smolka, M. N. (2008). Does erotic stimulus presentation design affect brain activation patterns? Eventrelated vs. blocked fMRI designs. Behavioral and Brain FunctionS, 4(1), 30.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Bustamante, J. C., Barrõs-Loscertales, A., Costumero, V., Fuentes-Claramonte, P., Rosell-Negre, P., Ventura-Campos, N., Llopis, J. J., & Ávila, C. (2014). Abstinence duration modulates striatal functioning during monetary reward processing in cocaine patients. Addict Biol, 19, 885–894.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Camara, E., Rodriguez-Fornells, A., Münte, T. F., Neuroscience, H., Camara, E., Rodriguez-Fornells, A., & Münte, T. F. (2008). Functional connectivity of reward processing in the brain. Front Hum Neurosci, 2, 19.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Camara, E., Krämer, U. M., Cunillera, T., Marco-Pallarés, J., Cucurell, D., Nager, W., Mestres-Missé, A., Bauer, P., Schüle, R., Schöls, L., Tempelmann, C., Rodriguez-Fornells, A., & Münte, T. F. (2010). The effects of COMT. (Val108/158Met) and DRD4 (SNP-521) dopamine genotypes on brain activations related to valence and magnitude of rewards. Cereb Cortex, 20, 1985–1996.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Carlson, J. M., Foti, D., Mujica-Parodi, L. R., Harmon-Jones, E., & Hajcak, G. (2011). Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study. Neuroimage, 57, 1608–1616. Scholar
  35. Causse, M., Péran, P., Dehais, F., Caravasso, C. F., Zeffiro, T., Sabatini, U., & Pastor, J. (2013). Affective decision making under uncertainty during a plausible aviation task: An fMRI study. Neuroimage, 71, 19–29.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Choi, J. M., Padmala, S., Spechler, P., & Pessoa, L. (2013). Pervasive competition between threat and reward in the brain. Social cognitive and affective neurosciencE., 9(6), 737–750.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chowdhury, R., Guitart-Masip, M., Lambert, C., Dolan, R. J., & Duzel, E. (2013). Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals. Neurobiology of Aging, 34(10), 2261–2270. Scholar
  38. Christoff, K., & Gabrieli, J. D. E. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28(2), 168–186. Scholar
  39. Christoff, K., Keramatian, K., Gordon, A. M., Smith, R., & MÃdler, B. (2009). Prefrontal organization of cognitive control according to levels of abstraction. Brain Research, 1286, 94–105. Scholar
  40. Clark, L., Lawrence, A. J., Astley-Jones, F., & Gray, N. (2009). Gambling Near-Misses Enhance Motivation to Gamble and Recruit Win-Related Brain Circuitry. Neuron, 61, 481–490. Scholar
  41. Clithero, J. A., Smith, D. V., Carter, R. M., & Huettel, S. A. (2011). Within- and cross-participant classifiers reveal different neural coding of information. Neuroimage, 56, 699–708. Scholar
  42. Cohen, M. X., Cavanagh, J. F., & Slagter, H. A. (2011). Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: Temporospatial principal components analysis and source localization of the feedback negativity: Commentary. Human Brain Mapping, 32(12), 2270–2271. Scholar
  43. Costumero, V., Barrós-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Fuentes, P., Rosell-Negre, P., & Ávila, C. (2013). Reward Sensitivity Is Associated with Brain Activity during Erotic Stimulus Processing. PLoS One, 8, e66940.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cox, S. M. L. (2005). Learning to Like: A Role for Human Orbitofrontal Cortex in Conditioned Reward. J Neurosci, 25, 2733–2740.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance Neuroimages. Computers and Biomedical Research, 29(3), 162–173. Scholar
  46. Crick, F. C., & Koch, C. (2005). What is the function of the claustrum? Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1458), 1271–1279. Scholar
  47. da Silva Alves, F., Schmitz, N., Figee, M., Abeling, N., Hasler, G., van der Meer, J., Nederveen, A., de Haan, L., Linszen, D., & van Amelsvoort, T. (2011). Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study. J Psychopharmacol, 25, 538–549.PubMedCrossRefPubMedCentralGoogle Scholar
  48. De Araujo, I. E. T., Rolls, E. T., Kringelbach, M. L., McGlone, F., & Phillips, N. (2003). Taste-olfactory convergencE., and the representation of the pleasantness of flavouR., in the human brain. Eur J Neurosci, 18, 2059–2068.PubMedCrossRefPubMedCentralGoogle Scholar
  49. de Lange, F. P., Roelofs, K., & Toni, I. (2008). Motor imagery: A window into the mechanisms and alterations of the motor system. Cortex, 44(5), 494–506. Scholar
  50. Demos, K. E., Kelley, W. M., & Heatherton, T. F. (2011). Dietary restraint violations influence reward responses in nucleus accumbens and amygdala. J Cogn Neurosci, 23, 1952–1963.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Diekhof, E. K., Falkai, P., & Gruber, O. (2008). Functional neuroimaging of reward processing and decision-making: A review of aberrant motivational and affective processing in addiction and mood disorders. Brain Research Reviews, 59(1), 164–184. Scholar
  52. Domenech, P., & Dreher, J. C. (2008). Distinguishing two brain systems involved in choosing between different types of rewards. In Society for Neuroscience Annual Meeting, Washington, DC. Google Scholar
  53. Dowd, E. C., & Barch, D. M. (2012). Pavlovian reward prediction and receipt in schizophrenia: Relationship to anhedonia. PLoS One, 7, 1–12.Google Scholar
  54. Duerden, E. G., Arsalidou, M., Lee, M., & Taylor, M. J. (2013). Lateralization of affective processing in the insula. NeuroImage, 78, 159–175. Scholar
  55. Edmiston, E. K., McHugo, M., Dukic, M. S., Smith, S. D., Abou-Khalil, B., Eggers, E., & Zald, D. H. (2013). Enhanced Visual Cortical Activation for Emotional Stimuli is Preserved in Patients with Unilateral Amygdala Resection. J Neurosci, 33, 11023–11031.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ehrlich, D. E., & Josselyn, S. A. (2016). Plasticity-related genes in brain development and amygdala-dependent learning. Genes, Brain and Behavior, 15(1), 125–143. Scholar
  57. Eickhoff, S. B., Laird, A. R., Fox, P. M., Lancaster, J. L., & Fox, P. T. (2016). Implementation errors in the GingerALE software: Description and recommendations. Human Brain Mapping, 11(604102), 7–11. Scholar
  58. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926. Scholar
  59. Eldeghaidy, S., Marciani, L., McGlone, F., Hollowood, T., Hort, J., Head, K., Taylor, A. J., Busch, J., Spiller, R. C., Gowland, P. A., & Francis, S. T. (2011). The cortical response to the oral perception of fat emulsions and the effect of taster status. J Neurophysiol, 105, 2572–2581.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Elliott, R., Friston, K. J., & Dolan, R. J. (2000). Dissociable neural responses in human reward systems. The Journal of neuroscience : The official journal of the Society for Neuroscience, 20(16), 6159–6165.CrossRefGoogle Scholar
  61. Elliott, R., Newman, J. L., Longe, O. A., & Deakin, J. W. (2003). Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. Journal of NeurosciencE., 23(1), 303–307.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Elliott, R., Newman, J. L., Longe, O. A., & Deakin, J. F. W. (2004). Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. NeuroImage, 21(3), 984–990. Scholar
  63. Ernst, M., Nelson, E. E., Jazbec, S., McClure, E. B., Monk, C. S., Leibenluft, E., Blair, J., & Pine, D. S. (2005). Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. Neuroimage, 25, 1279–1291.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Fareri, D.S., & Delgado, M.R. (2014). Differential reward responses during competition against in- and out-of-network others. Soc Cogn Affect Neurosci :412–420.Google Scholar
  65. Fareri, D. S., Niznikiewicz, M. A., Lee, V. K., & Delgado, M. R. (2012). Social Network Modulation of Reward-Related Signals. J Neurosci, 32, 9045–9052.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fauth-Bühler, M., Zois, E., Vollstädt-Klein, S., Lemenager, T., Beutel, M., & Mann, K. (2014). Insula and striatum activity in effort-related monetary reward processing in gambling disorder: The role of depressive symptomatology. NeuroImage Clin, 6, 243–251. Scholar
  67. Felsted, J. A., Ren, X., Chouinard-Decorte, F., & Small, D. M. (2010). Genetically determined differences in brain response to a primary food reward. J eurosci, 30, 2428–2432.CrossRefGoogle Scholar
  68. Ferretti, A., Caulo, M., Del Gratta, C., Di Matteo, R., Merla, A., Montorsi, F., Pizzella, V., Pompa, P., Rigatti, P., Rossini, P. M., Salonia, A., Tartaro, A., & omani G.L. (2005). Dynamics of male sexual arousal: Distinct components of brain activation revealed by fMRI. Neuroimage, 26, 1086–1096.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Figee, M., Vink, M., De Geus, F., Vulink, N., Veltman, D. J., Westenberg, H., & Denys, D. (2011). Dysfunctional reward circuitry in obsessive-compulsive isorder. Biol Psychiatry, 69, 867–874. Scholar
  70. Filbey, F. M., Myers, U. S., & DeWitt, S. (2012). Reward circuit function in high BMI individuals with compulsive overeating: Similarities with addiction. Euroimage, 63, 1800–1806. Scholar
  71. Filbey, F. M., Dunlop, J., & Myers, U. S. (2013). Neural Effects of Positive and Negative Incentives during Marijuana Withdrawal. PLoS One, 8, e61470.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Francis, S., Rolls, E. T., Bowtell, R., McGlone, F., O’Doherty, J., Browning, A., Clare, S., & Smith, E. (1999). The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport, 10, 453–459.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Frank, G. K. W., Reynolds, J. R., Shott, M. E., Jappe, L., Yang, T. T., Tregellas, J. R., & O’Reilly, R. C. (2012). Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology, 37, 2031–2046. Scholar
  74. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroimagE., 19(4), 1273–1302. Scholar
  75. Fujiwara, J., Tobler, P. N., Taira, M., Iijima, T., & Tsutsui, K.-I. (2009). Segregated and Integrated Coding of Reward and Punishment in the Cingulate Cortex. J Neurophysiol, 101, 3284–3293.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Furl, N., & Averbeck, B. B. (2011). Parietal cortex and insula relate to evidence seeking relevant to reward-related decisions. J Neurosci, 31, 17572–17582.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Galván, A., & McGlennen, K. M. (2013). Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults. J Cogn Neurosci, 25, 284–296.PubMedCrossRefPubMedCentralGoogle Scholar
  78. García-García, I., Horstmann, A., Jurado, M. A., Garolera, M., Chaudhry, S. J., Margulies, D. S., Villringer, A., & Neumann, J. (2014). Reward processing in obesity, substance addiction and non-substance addiction. Obesity Reviews, 15(11), 853–869. Scholar
  79. Gearhardt, A. N., Yokum, S., Orr, P. T., Stice, E., Corbin, W. R., & Brownell, K. D. (2011). Neural correlates of food addiction. Arch Gen Psychiatry, 68, 808–816.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 2279–2282. Scholar
  81. Goll, Y., Atlan, G., & Citri, A. (2015). Attention: The claustrum. Trends in Neurosciences, 38(8), 486–495. Scholar
  82. Gossen, A., Groppe, S. E., Winkler, L., Kohls, G., Herrington, J., Schultz, R. T., Gründer, G., & Spreckelmeyer, K. N. (2014). Neural evidence for an association between social proficiency and sensitivity to social reward. Soc Cogn Affect Neurosci, 9, 661–670.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Grabenhorst, F., Rolls, E. T., Parris, B. A., & D’Souza, A. A. (2010a). How the brain represents the reward value of fat in the mouth. Cereb Cortex, 20, 1082–1091.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Grabenhorst, F., D’Souza, A. A., Parris, B. A., Rolls, E. T., & Passingham, R. E. (2010b). A common neural scale for the subjective pleasantness of different primary rewards. Neuroimage, 51, 1265–1274. Scholar
  85. Grabenhorst, F., Rolls, E. T., Parris, B. A., & D’Souza, A. A. (2010). How the brain represents the reward value of fat in the mouth. Cerebral Cortex, 20(5), 1082–1091. Scholar
  86. Graf, H., Abler, B., Hartmann, A., Metzger, C. D., & Walter, M. (2013). Modulation of attention network activation under antidepressant agents in healthy subjects. Int J Neuropsychopharmacol, 16, 1219–1230.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Green, E., & Murphy, C. (2012). Altered processing of sweet taste in the brain of diet soda drinkers. Physiol Behav, 107, 560–567.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Green, L., & Myerson, J. (2004). A discounting framework for choice with delayed and probabilistic rewards. Psychological Bulletin, 130(5), 769–792. Scholar
  89. Griffioen-Roose, S., Smeets, P. A. M., Weijzen, P. L. G., Van Rijn, I., Van Den Bosch, I., & De Graaf, C. (2013). Effect of replacing sugar with non-caloric sweeteners in beverages on the reward value after repeated exposure. PLoS One, 8, 1–12.CrossRefGoogle Scholar
  90. Groenewegen, H. J. (2003). The basal ganglia and motor control. Neural Plasticity, 10(1–2), 107–120. Scholar
  91. Grosbras, M. H., Laird, A. R., & Paus, T. (2005). Cortical regions involved in eye movements, shifts of attention, and gaze perception. Human Brain Mapping, 25(1), 140–154. Scholar
  92. Gu, X., Hof, P. R., Friston, K. J., & Fan, J. (2013). Anterior insular cortex and emotional awareness. Journal of Comparative Neurology, 521(15), 3371–3388. Scholar
  93. Haase, L., Cerf-Ducastel, B., & Murphy, C. (2009). Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage, 44, 1008–1021. Scholar
  94. Haase, L., Green, E., & Murphy, C. (2011). Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas. Appetite, 57, 421–434.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy, 26(4), 317–330. Scholar
  96. Hamann, S., Herman, R. A., Nolan, C. L., & Wallen, K. (2004). Men and women differ in amygdala response to visual sexual stimuli. Nat Neurosci, 7, 411–416.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Hardin, M. G., Pine, D. S., & Ernst, M. (2009). The influence of context valence in the neural coding of monetary outcomes. NeuroImage, 48(1), 249–257. Scholar
  98. Hasler, B. P., Sitnick, S. L., Shaw, D. S., & Forbes, E. E. (2013). An altered neural response to reward may contribute to alcohol problems among late adolescents with an evening chronotype. Psychiatry research: neuroimaginG., 214(3), 357–364.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Hasler, B. P., Forbes, E. E., & Franzen, P. L. (2014). Time-of-day differences and short-term stability of the neural response to monetary reward: A pilot study. Psychiatry Res - Neuroimaging, 224, 22–27. Scholar
  100. Hausler, A. N., Becker, B., Bartling, M., & Weber, B. (2015). Goal or gold: Overlapping reward processes in soccer players upon scoring and winning money. PLoS One, 10, 1–16.CrossRefGoogle Scholar
  101. Hawes, D. R., DeYoung, C. G., Gray, J. R., & Rustichini, A. (2014). Intelligence moderates neural responses to monetary reward and punishment. J Neurophysiol, 111, 1823–1832.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hermans, E. J., Bos, P. A., Ossewaarde, L., Ramsey, N. F., Fernández, G., & van Honk, J. (2010). Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women. Neuroimage, 52, 277–283. Scholar
  103. Hernandez, L. J., Kuss, K., Trautner, P., Weber, B., Falk, A., & Fliessbach, K. (2014). Effort increases sensitivity to reward and loss magnitude in the human brain. Soc Cogn Affect Neurosci, 9, 342–349.CrossRefGoogle Scholar
  104. Horder, J., Harmer, C. J., Cowen, P. J., & McCabe, C. (2010). Reduced neural response to reward following 7 days treatment with the cannabinoid CB1 antagonist rimonabant in healthy volunteers. Int J Neuropsychopharmacol, 13, 1103–1113.PubMedCrossRefGoogle Scholar
  105. Hu, S. H., Wei, N., Wang, Q. D., Yan, L. Q., Wei, E. Q., Zhang, M. M., Hu, J. B., Huang, M. L., Zhou, W. H., & Xu, Y. (2008). Patterns of brain activation during visually evoked sexual arousal differ between homosexual and heterosexual men. Am J Neuroradiol, 29, 1890–1896.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Hu, S., Wang, Q., Xu, Y., Liao, Z., Xu, L., Liao, Z., Xu, X., Wei, E., Yan, L., Hu, J., Wei, N., Zhou, W., Huang, M., & Zhang, M. (2011). Haemodynamic brain response to visual sexual stimuli is different between homosexual and heterosexual men. J Int Med Res, 39, 199–211.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Huettel, S. A., Güzeldere, G., & McCarthy, G. (2001). Dissociating the neural mechanisms of visual attention in change detection using functional MRI. Journal of Cognitive Neuroscience, 13(7), 1006–1018. Scholar
  108. Ikemoto, S., Yang, C., & Tan, A. (2015). Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behavioural Brain Research, 290, 17–31. Scholar
  109. Iozzo, P., Guiducci, L., Guzzardi, M. A., & Pagotto, U. (2012). Brain PET imaging in obesity and food addiction: Current evidence and hypothesis. Obesity Facts, 5(2), 155–164. Scholar
  110. Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of Social and Monetary Rewards in the Human Striatum. Neuron, 58, 284–294.PubMedCrossRefGoogle Scholar
  111. Jacobson, A., Green, E., & Murphy, C. (2010). Age-related functional changes in gustatory and reward processing regions: An fMRI study. Neuroimage, 53, 602–610. Scholar
  112. Jansma, J. M., van Hell, H. H., Vanderschuren, L. J. M. J., Bossong, M. G., Jager, G., Kahn, R. S., & Ramsey, N. F. (2013). THC reduces the anticipatory nucleus accumbens response to reward in subjects with a nicotine addiction. Translational Psychiatry, 3(2), e234. Scholar
  113. Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15(6), 681–695. Scholar
  114. Kagerer, S., Klucken, T., Wehrum, S., Zimmermann, M., Schienle, A., Walter, B., Vaitl, D., & Stark, R. (2011). Neural activation toward erotic stimuli in homosexual and heterosexual males. J Sex Med, 8, 3132–3143.PubMedCrossRefGoogle Scholar
  115. Kahnt, T., Park, S. Q., Haynes, J., & Tobler, P. N. (2014). Disentangling neural representations of value and salience in the human brain. Proc Natl Acad Sci U S A, 111, 5000–5005.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kanayet, F. J., Opfer, J. E., & Cunningham, W. A. (2014). The value of numbers in economic rewards. Psychol Sci, 25, 1534–1545.PubMedCrossRefGoogle Scholar
  117. Karama, S., Lecours, A. R., Leroux, J. M., Bourgouin, P., Beaudoin, G., Joubert, S., & Beauregard, M. (2002). Areas of brain activation in males and females during viewing of erotic film excerpts. Hum Brain Mapp, 16, 1–13.PubMedCrossRefGoogle Scholar
  118. Katahira, K., Matsuda, Y.-T., Fujimura, T., Ueno, T. A., Suzuki, C., Cheng, K., Okanoya, K., & Okada, M. (2015). Neural basis of decision making guided by emotional outcomes. J Neurophysiol, 113, 3056–3068.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kerr, K. L., Avery, J. A., Barcalow, J. C., Moseman, S. E., Bodurka, J., Bellgowan, P. S. F., & Simmons, W. K. (2015). Trait impulsivity is related to ventral ACC and amygdala activity during primary reward anticipation. Soc Cogn Affect Neurosci, 10, 36–42.PubMedCrossRefGoogle Scholar
  120. Kim, H., Shimojo, S., & O’Doherty, J. P. (2011). Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. Cereb Cortex, 21, 769–776.PubMedCrossRefGoogle Scholar
  121. Kim, S. W., Sohn, D. W., Cho, Y., Yang, W. S., Lee, K., Juh, R., Ahn, K. J., Chung, Y. A., Han, S. I., Lee, K. H., Lee, C. U., & Chae, J. H. (2006). Brain activation by visual erotic stimuli in healthy middle aged males. International Journal of Impotence Research, 18(5), 452–457. Scholar
  122. Kim, S. H., Yoon, H., Kim, H., & Hamann, S. (2015). Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning. Social cognitive and affective neurosciencE., 10(9), 1219–1227.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kirk, U., Brown, K. W., & Downar, J. (2015). Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators. Soc Cogn Affect Neurosci, 10, 752–759.PubMedCrossRefGoogle Scholar
  124. Kirk, U., Brown, K. W., & Downar, J. (2014). Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators. Social Cognitive and Affective Neuroscience, 10(5), 752–759.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Klucken, T., Wehrum, S., Schweckendiek, J., Merz, C. J., Hennig, J., Vaitl, D., & Stark, R. (2013). The 5-HTTLPR polymorphism is associated with altered hemodynamic responses during appetitive conditioning. Hum Brain Mapp, 34, 2549–2560.PubMedCrossRefGoogle Scholar
  126. Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus Accumbens. The Journal of Neuroscience, 21, 1–5.CrossRefGoogle Scholar
  127. Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event-related fMRI. Neuroimage, 18, 263–272.PubMedCrossRefGoogle Scholar
  128. Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural Responses to Monetary Incentives in Major Depression. Biol Psychiatry, 63, 686–692.PubMedCrossRefGoogle Scholar
  129. Koch, K., Wagner, G., Schachtzabel, C., Schultz, C. C., Güllmar, D., Reichenbach, J. R., Sauer, H., Zimmer, C., & Schlösser, R. G. M. (2014). Association between white matter fiber structure and reward-related reactivity of the ventral striatum. Hum Brain Mapp, 35, 1469–1476.PubMedCrossRefGoogle Scholar
  130. Koester, P., Volz, K. G., Tittgemeyer, M., Wagner, D., Becker, B., Gouzoulis-Mayfrank, E., & Daumann, J. (2013). Decision-making in polydrug amphetaminetype stimulant users: an fMRI study. Neuropsychopharmacology, 38, 1377–1386.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Kohno, M., Ghahremani, D. G., Morales, A. M., Robertson, C. L., Ishibashi, K., Morgan, A. T., Mandelkern, M. A., & London, E. D. (2015). Risk-taking behavior: Dopamine D2/D3 receptorS., feedbacK., and frontolimbic activity. Cereb Cortex, 25, 236–245.PubMedCrossRefGoogle Scholar
  132. Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment – If the rhythm comes easily. PLoS One, 6, 1–12.CrossRefGoogle Scholar
  133. Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217–230. Scholar
  134. Kringelbach, M. L., O’Doherty, J., Rolls, E. T., & Andrews, C. (2003). Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex, 13, 1064–1071.PubMedCrossRefGoogle Scholar
  135. Kumar, P., Berghorst, L. H., Nickerson, L. D., Dutra, S. J., Goer, F. K., Greve, D. N., & Pizzagalli, D. A. (2014). Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience, 266, 1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Kurniawan, I. T., Seymour, B., Talmi, D., Yoshida, W., Chater, N., & Dolan, R. J. (2010). Choosing to make an effort: the role of striatum in signaling physical effort of a chosen action. J Neurophysiol, 104, 313–321.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Kurniawan, I. T., Guitart-Masip, M., Dayan, P., & Dolan, R. J. (2013). Effort and valuation in the brain: the effects of anticipation and execution. J Neurosci, 33, 6160–6169.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lawrence, N. S., Hinton, E. C., Parkinson, J. A., & Lawrence, A. D. (2012). Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. NeuroImage, 63(1), 415–422. Scholar
  139. Lawson, R. P., Seymour, B., Loh, E., Lutti, A., Dolan, R. J., Dayan, P., Weiskopf, N., & Roiser, J. P. (2014). The habenula encodes negative motivational value associated with primary punishment in humans. Proc Natl Acad Sci U S A, 111, 11858–11863.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lehericy, S., Bardinet, E., Tremblay, L., Van de Moortele, P. F., Pochon, J. B., Dormont, D., et al. (2006). Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex, 16(2), 149–161. Scholar
  141. Leroy, A., Thomas, P., & Jardri, R. (2015). Activation cérébrale et récompense dans la schizophrénie : une méta-analyse des données d’IRM fonctionnelle. European Psychiatry, 30(8, Supplement), S113. Scholar
  142. Li, N., Ma, N., Liu, Y., He, X.-S., Sun, D.-L., Fu, X.-M., Zhang, X., Han, S., & Zhang, D.-R. (2013). Resting-State Functional Connectivity Predicts Impulsivity in Economic Decision-Making. J Neurosci, 33, 4886–4895. Scholar
  143. Lighthall, N. R., Sakaki, M., Vasunilashorn, S., Nga, L., Somayajula, S., Chen, E. Y., Samii, N., & Mather, M. (2012). Gender differences in reward-related decision processing under stress. Soc Cogn Affect Neurosci, 7, 476–484.PubMedCrossRefGoogle Scholar
  144. Likhtik, E., & Paz, R. (2015). Amygdala-prefrontal interactions in (mal)adaptive learning. Trends in Neurosciences, 38(3), 158–166. Scholar
  145. Lin, A., Adolphs, R., & Rangel, A. (2012). Social and monetary reward learning engage overlapping neural substrates. Soc Cogn Affect Neurosci, 7, 274–281.PubMedCrossRefGoogle Scholar
  146. Linke, J., Kirsch, P., King, A. V., Gass, A., Hennerici, M. G., Bongers, A., & Wessa, M. (2010). Motivational orientation modulates the neural response to reward. Neuroimage, 49, 2618–2625. Scholar
  147. Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219–1236. Scholar
  148. Luo, S., Ainslie, G., Pollini, D., Giragosian, L., & Monterosso, J. R. (2012). Moderators of the association between brain activation and farsighted choice. Neuroimage, 59, 1469–1477. Scholar
  149. Luo, S., Monterosso, J. R., Sarpelleh, K., & Page, K. A. (2015). Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proc Natl Acad Sci, 112, 6509–6514.PubMedCrossRefGoogle Scholar
  150. Martin, J. (2003). Neuroanatomy text and atlas. McGraw-Hill Education. New York.Google Scholar
  151. Martin, L. N., & Delgado, M. R. (2011). The influence of emotion regulation on decision-making under risk. J Cogn Neurosci, 23, 2569–2581.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Martin, L. E., Potts, G. F., Burton, P. C., & Montague, P. R. (2009). Electrophysiological and hemodynamic responses to reward prediction violation. Neuroreport, 20, 1140–1143.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Martin, L. E., Cox, L. S., Brooks, W. M., & Savage, C. R. (2014). Winning and losing: Differences in reward and punishment sensitivity between smokers and nonsmokers. Brain Behav, 4, 915–924.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Martin-Soelch, C., Szczepanik, J., Nugent, A., Barhaghi, K., Rallis, D., Herscovitch, P., et al. (2011). Lateralization and gender differences in the dopaminergic response to unpredictable reward in the human ventral striatum. European Journal of NeurosciencE., 33(9), 1706–1715.PubMedCrossRefGoogle Scholar
  155. Marzinzik, F., Wahl, M., Schneider, G.-H., Kupsch, A., Curio, G., & Klostermann, F. (2008). The human thalamus is crucially involved in executive control operations. Journal of Cognitive Neuroscience, 20(10), 1903–1914. Scholar
  156. Mathur, B. N. (2014). The claustrum in review. Frontiers in Systems Neuroscience, 8(April), 48. Scholar
  157. Matsumoto, M., & Hikosaka, O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111–1115. Scholar
  158. McCabe, C., & Rolls, E. T. (2007). Umami: A delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur J Neurosci, 25, 1855–1864.PubMedCrossRefGoogle Scholar
  159. McCabe, C., Huber, A., Harmer, C. J., & Cowen, P. J. (2011). The D2 antagonist sulpiride modulates the neural processing of both rewarding and aversive stimuli in healthy volunteers. PsychopharmacologY. (Berl), 217, 271–278.CrossRefGoogle Scholar
  160. McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44, 379–387.PubMedCrossRefGoogle Scholar
  161. Metereau, E., & Dreher, J. C. (2013). Cerebral correlates of salient prediction error for different rewards and punishments. Cereb Cortex, 23, 477–487.PubMedCrossRefGoogle Scholar
  162. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicinE., 151(4), 264–269. Scholar
  163. Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. NeuroImage, 112, 244–253. Scholar
  164. Moulier, V., Mouras, H., Pélégrini-Issac, M., Glutron, D., Rouxel, R., Grandjean, B., Bittoun, J., & Stoléru, S. (2006). Neuroanatomical correlates of penile erection evoked by photographic stimuli in human males. Neuroimage, 33, 689–699.PubMedCrossRefGoogle Scholar
  165. Mouras, H., Stoléru, S., Moulier, V., Pélégrini-Issac, M., Rouxel, R., Grandjean, B., Glutron, D., & Bittoun, J. (2008). Activation of mirror-neuron system by erotic video clips predicts degree of induced erection: an fMRI study. Neuroimage, 42, 1142–1150.PubMedCrossRefGoogle Scholar
  166. Mowrer, S.M., Jahn, A.A., Abduljalil, A., & Cunningham, W.A. (2011). The value of success: Acquiring gainS., avoiding losseS., and simply being successful. PLoS One, 6.Google Scholar
  167. Mullin, B. C., Phillips, M. L., Siegle, G. J., Buysse, D. J., Forbes, E. E., & Franzen, P. L. (2013). Sleep deprivation amplifies striatal activation to monetary reward. Psychol Med, 43, 2215–2225.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010). Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proc Natl Acad Sci U S A, 107, 20911–20916.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Nadeau, S. E. (2008). The thalamus and working memory. Journal of the International Neuropsychological Society, 14(5), 900–901. Scholar
  170. Ng, J., Stice, E., Yokum, S., & Bohon, C. (2011). An fMRI study of obesitY., food rewarD., and perceived caloric density. Does a low-fat label make food less appealing? Appetite, 57, 65–72.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Nieuwenhuis, S., Heslenfeld, D. J., von Geusau, N. J. A., Mars, R. B., Holroyd, C. B., & Yeung, N. (2005). Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage, 25, 1302–1309.PubMedCrossRefGoogle Scholar
  172. Nolan-Poupart, S., Veldhuizen, M. G., Geha, P., & Small, D. M. (2013). Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite, 60, 168–174.PubMedCrossRefGoogle Scholar
  173. O’Connor, D. A., Rossiter, S., Yücel, M., Lubman, D. I., & Hester, R. (2012). Successful inhibitory control over an immediate reward is associated with attentional disengagement in visual processing areas. Neuroimage, 62, 1841–1847. Scholar
  174. O’Doherty, J. P., Rolls, E. T., Francis, S., Bowtell, R., & McGlone, F. (2001). Representation of pleasant and aversive taste in the human brain. J Neurophysiol, 85, 1315–1321.PubMedCrossRefGoogle Scholar
  175. O’Doherty, J. P., Deichmann, R., Critchley, H. D., & Dolan, R. J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33, 815–826.PubMedCrossRefGoogle Scholar
  176. O’Doherty, J., Critchley, H., Deichmann, R., & Dolan, R. J. (2003). Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci, 23, 7931–7939.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Oei, N. Y. L., Both, S., van Heemst, D., & van der Grond, J. (2014). Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli. Psychoneuroendocrinology, 39, 111–120. Scholar
  178. Ossewaarde, L., Van Wingen, G. A., Kooijman, S. C., Bäckström, T., Fernández, G., & Hermans, E. J. (2011). Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Soc Cogn Affect Neurosci, 6, 612–620.PubMedCrossRefGoogle Scholar
  179. Ossewaarde, L., Qin, S., Van Marle, H. J. F., van Wingen, G. A., Fernández, G., & Hermans, E. J. (2011a). Stress-induced reduction in reward-related prefrontal cortex function. Neuroimage, 55, 345–352. Scholar
  180. Ossewaarde, L., Verkes, R. J., Hermans, E. J., Kooijman, S. C., Urner, M., Tendolkar, I., Van Wingen, G. A., & Fernández, G. (2011b). Two-week administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine augments functioning of mesolimbic incentive processing circuits. Biol Psychiatry, 70, 568–574. Scholar
  181. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. Scholar
  182. Parent, A., & Hazrati, L. N. (1995). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Reviews, 20(1), 91–127. Scholar
  183. Park, S., Tyszka, J. M., & Allman, J. M. (2012). The Claustrum and insula in Microcebus murinus: A high resolution diffusion imaging study. Frontiers in Neuroanatomy, 6(June), 21. Scholar
  184. Pascual-Leone, J. (1989). An organismic process model of Witkin’s field-dependence—Independence. In T. G. T. Zelniker (Ed.), Cognitive style and cognitive development. Westport, CT: Ablex Publishing.Google Scholar
  185. Pascual-Leone, J., Pascual-Leone, A., & Arsalidou, M. (2015). Neuropsychology still needs to model organismic processes "from within". Behavioral and Brain Sciences, 38, e83. Scholar
  186. Paul, T., Schiffer, B., Zwarg, T., Krüger, T. H. C., Karama, S., Schedlowski, M., Forsting, M., & Gizewski, E. R. (2008). Brain response to visual sexual stimuli in heterosexual and homosexual males. Hum Brain Mapp, 29, 726–735.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60(4), 389–443. Scholar
  188. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237–1258. Scholar
  189. Petrovic, P., Pleger, B., Seymour, B., Kloppel, S., De Martino, B., Critchley, H., & Dolan, R. J. (2008). Blocking Central Opiate Function Modulates Hedonic Impact and Anterior Cingulate Response to Rewards and Losses. J Neurosci, 28, 10509–10516.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Petit, L., Orssaud, C., Tzourio, N., Salamon, G., Mazoyer, B., & Berthoz, A. (1993). PET study of voluntary saccadic eye movements in humans: Basal ganglia-thalamocortical system and cingulate cortex involvement. Journal of Neurophysiology.Google Scholar
  191. Pidgeon, L. M., Grealy, M., Duffy, A. H. B., Hay, L., McTeague, C., Vuletic, T., et al. (2016). Functional neuroimaging of visual creativity: A systematic review and meta-analysis. Brain and Behavior, 6(10), 1–26. Scholar
  192. Pinault, D. (2004). The thalamic reticular nucleus: Structure, function and concept. Brain Research Reviews, 46. Scholar
  193. Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. Proc Natl Acad Sci U S A, 105, 1050–1054.PubMedPubMedCentralCrossRefGoogle Scholar
  194. Pochon, J. B., Levy, R., Fossati, P., Lehericy, S., Poline, J. B., Pillon, B., le Bihan, D., & Dubois, B. (2002). The neural system that bridges reward and cognition in humans: An fMRI study. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5669–5674. Scholar
  195. Ponseti, J., Bosinski, H. A., Wolff, S., Peller, M., Jansen, O., Mehdorn, H. M., Büchel, C., & Siebner, H. R. (2006). A functional endophenotype for sexual orientation in humans. Neuroimage, 33, 825–833.PubMedCrossRefGoogle Scholar
  196. Prevost, C., Pessiglione, M., Metereau, E., Clery-Melin, M. L., & Dreher, J. C. (2010). Separate Valuation Subsystems for Delay and Effort Decision Costs. J Neurosci, 30, 14080–14090.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Ramnani, N., Elliott, R., Athwal, B. S., & Passingham, R. E. (2004). Prediction error for free monetary reward in the human prefrontal cortex. Neuroimage, 23, 777–786.PubMedCrossRefPubMedCentralGoogle Scholar
  198. Reuter, J., Raedler, T., Rose, M., Hand, I., Gläscher, J., & Büchel, C. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci, 8, 147–148. Scholar
  199. Riehle, A., & Requin, J. (1989). Monkey primary motor and premotor cortex: Single-cell activity related to prior information about direction and extent of an intended movement. Journal of Neurophysiology.Google Scholar
  200. Ripke, S., Hubner, T., Mennigen, E., Muller, K. U., Rodehacke, S., Schmidt, D., Jacob, M. J., & Smolka, M. N. (2012). Reward processing and intertemporal decision making in adults and adolescents: The role of impulsivity and decision consistency. Brain Res, 1478, 36–47.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Robinson, J. L., Laird, A. R., Glahn, D. C., Blangero, J., Sanghera, M. K., Pessoa, L., Fox, P. M., Uecker, A., Friehs, G., Young, K. A., Griffin, J. L., Lovallo, W. R., & Fox, P. T. (2012). The functional connectivity of the human caudate: An application of meta-analytic connectivity modeling with behavioral filtering. NeuroImage, 60(1), 117–129. Scholar
  202. Rohe, T., Weber, B., & Fliessbach, K. (2012). Dissociation of BOLD responses to reward prediction errors and reward receipt by a model comparison. Eur J Neurosci, 36, 2376–2382.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Rogers, R. D., Ramnani, N., Mackay, C., Wilson, J. L., Jezzard, P., Carter, C. S., & Smith, S. M. (2004). Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biological Psychiatry, 55(6), 594–602. Scholar
  204. Rolls, E. T., & McCabe, C. (2007). Enhanced affective brain representations of chocolate in cravers vs. non-cravers. Eur J Neurosci, 26, 1067–1076.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Rudenga, K. J., & Small, D. M. (2013). Ventromedial prefrontal cortex response to concentrated sucrose reflects liking rather than sweet quality coding. Chem Senses, 38, 585–594.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Rudenga, K.J., Sinha, R., & Small, D.M. (2012). Acute stress potentiates brain response to milkshake as a function of body weight and chronic stress. Int J ObeS. (Lond) :1–8.Google Scholar
  207. Rudorf, S., & Hare, T. A. (2014). Interactions between Dorsolateral and Ventromedial Prefrontal Cortex Underlie Context-Dependent Stimulus Valuation in Goal-Directed Choice. J Neurosci, 34, 15988–15996.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Sabatinelli, D., Bradley, M. M., Lang, P. J., Costa, V. D., & Versace, F. (2007). Pleasure Rather Than Salience Activates Human Nucleus Accumbens and Medial Prefrontal Cortex Volume analysis. J Neurophysiol, 98, 1374–1379.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Safron, A., Barch, B., Bailey, J. M., Gitelman, D. R., Parrish, T. B., & Reber, P. J. (2007). Neural correlates of sexual arousal in homosexual and heterosexual men. Behav Neurosci, 121, 237–248.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Samanez-Larkin, G. R., Kuhnen, C. M., Yoo, D. J., & Knutson, B. (2010). Variability in nucleus accumbens activity mediates age-related suboptimal financial risk taking. J Neurosci, 30, 1426–1434.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Santos, S., Almeida, I., Oliveiros, B., & Castelo-Branco, M. (2016). The role of the amygdala in facial trustworthiness processing: A systematic review and meta-analyses of fMRI studies. PLoS One, 11(11), e0167276. Scholar
  212. Schiffer, B., Paul, T., Gizewski, E., Forsting, M., Leygraf, N., Schedlowski, M., & Kruger, T. H. C. (2008). Functional brain correlates of heterosexual paedophilia. Neuroimage, 41, 80–91.PubMedCrossRefGoogle Scholar
  213. Schlagenhauf, F., Juckel, G., Koslowski, M., Kahnt, T., Knutson, B., Dembler, T., Kienast, T., Gallinat, J., Wrase, J., & Heinz, A. (2008). Reward system activation in schizophrenic patients switched from typical neuroleptics to olanzapine. Psychopharmacology, 196(4), 673–684. Scholar
  214. Schultz, W. (2004). Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Current Opinion in Neurobiology, 14(2), 139–147. Scholar
  215. Seo, Y., Jeong, B., Kim, J.-W., & Choi, J. (2010). The relationship between age and brain response to visual erotic stimuli in healthy heterosexual males. Int J Impot Res, 22, 234–239. Scholar
  216. Sesack, S. R., & Grace, A. a. (2010). Cortico-basal ganglia reward network: Microcircuitry. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 35(1), 27–47. Scholar
  217. Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(4), 681–696. Scholar
  218. Sescousse, G., Redouté, J., & Dreher, J. C. (2010). The architecture of reward value coding in the human orbitofrontal cortex. J Neurosci, 30, 13095–13104.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Seubert, J., Ohla, K., Yokomukai, Y., Kellermann, T., & Lundström, J. N. (2015). Superadditive opercular activation to food flavor is mediated by enhanced temporal and limbic coupling. Hum Brain Mapp, 36, 1662–1676.PubMedCrossRefGoogle Scholar
  220. Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P., & Dolan, R. (2012). Serotonin selectively modulates reward value in human decision-making. J Neurosci, 32, 5833–5842.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature reviews. Neuroscience, 12(3), 154–167. Scholar
  222. Sharaev, M., Zavyalova, V., Ushakov, V. L., Kartashov, S. I., & Velichkovsky, B. M. (2016). Effective connectivity within the default mode network: Dynamic causal modeling of resting-state fMRI data. Frontiers in Human Neuroscience, 10, 14.PubMedPubMedCentralCrossRefGoogle Scholar
  223. Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 357(1428), 1695–1708. Scholar
  224. Shigemune, Y., Tsukiura, T., Kambara, T., & Kawashima, R. (2014). Remembering with gains and losses: Effects of monetary reward and punishment on successful encoding activation of source memories. Cereb Cortex, 24, 1319–1331.PubMedCrossRefPubMedCentralGoogle Scholar
  225. Silkis, I. (2001). The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia. BioSystems, 59(1), 7–14. Scholar
  226. Silverman, M. H., Jedd, K., & Luciana, M. (2015). Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies. NeuroImage, 122, 427–439. Scholar
  227. Skvortsova, V., Palminteri, S., & Pessiglione, M. (2014). Learning To Minimize Efforts versus Maximizing Rewards: Computational Principles and Neural Correlates. J Neurosci, 34, 15621–15630.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Small, D. M., Gregory, M. D., Mak, Y. E., Gitelman, D., Mesulam, M. M., & Parrish, T. (2003). Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron, 39, 701–711.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Small, D. M., Veldhuizen, M. G., Felsted, J., Mak, Y. E., & McGlone, F. (2008). Separable Substrates for Anticipatory and Consummatory Food Chemosensation. Neuron, 57, 786–797.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Smeets, P. A. M., Weijzen, P., de Graaf, C., & Viergever, M. A. (2011). Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. Neuroimage, 54, 1367–1374. Scholar
  231. Smith, D. V., Hayden, B. Y., Truong, T. K., Song, A. W., Platt, M. L., & Huettel, S. A. (2010). Distinct Value Signals in Anterior and Posterior Ventromedial Prefrontal Cortex. J Neurosci, 30, 2490–2495.PubMedPubMedCentralCrossRefGoogle Scholar
  232. Speer, M. E., Bhanji, J. P., & Delgado, M. R. (2014). Savoring the past: Positive memories evoke value representations in the striatum. Neuron, 84, 847–856. Scholar
  233. Spetter, M. S., Smeets, P. A. M., de Graaf, C., & Viergever, M. A. (2010). Representation of sweet and salty taste intensity in the brain. Chem Senses, 35, 831–840.PubMedCrossRefGoogle Scholar
  234. Spetter, M. S., de Graaf, C., Viergever, M. A., & Smeets, P. A. M. (2012). Anterior cingulate taste activation predicts ad libitum intake of sweet and savory drinks in healthY., normal-weight men. J Nutr, 142, 795–802.PubMedCrossRefGoogle Scholar
  235. Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2008). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510. Scholar
  236. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105(34), 12569–12574. Scholar
  237. Staudinger, M. R., Erk, S., & Walter, H. (2011). Dorsolateral prefrontal cortex modulates striatal reward encoding during reappraisal of reward anticipation. Cereb Cortex, 21, 2578–2588.PubMedCrossRefGoogle Scholar
  238. Stice, E., Burger, K., & Yokum, S. (2013). Caloric deprivation increases responsivity of attention and reward brain regions to intake, anticipated intake, and images of palatable foods. NeuroImage, 67, 322–330. Scholar
  239. Sun, X., Veldhuizen, M. G., Wray, A. E., de Araujo, I. E., Sherwin, R. S., Sinha, R., & Small, D. M. (2014). The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiol Behav, 136, 63–73. Scholar
  240. Sundaram, T., Jeong, G. W., Kim, T. H., Kim, G. W., Baek, H. S., & Kang, H. K. (2010). Time-course analysis of the neuroanatomical correlates of sexual arousal evoked by erotic video stimuli in healthy males. Korean J Radiol, 11, 278–285.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Suzuki, S., Niki, K., Fujisaki, S., & Akiyama, E. (2011). Neural basis of conditional cooperation. Soc Cogn Affect Neurosci, 6, 338–347.PubMedCrossRefGoogle Scholar
  242. Sweet, L. H., Hassenstab, J. J., McCaffery, J. M., Raynor, H. A., Bond, D. S., Demos, K. E., Haley, A. P., Cohen, R. A., Del Parigi, A., & Wing, R. R. (2012). Brain response to food stimulation in obesE., normal weighT., and successful weight loss maintainers. Obesity. (Silver Spring), 20, 2220–2225.CrossRefGoogle Scholar
  243. Sylva, D., Safron, A., Rosenthal, A. M., Reber, P. J., Parrish, T. B., Bailey, J., & M. (2013). Neural correlates of sexual arousal in heterosexual and homosexual women and men. Horm Behav, 64, 673–684. Scholar
  244. Szalay, C., Aradi, M., Schwarcz, A., Orsi, G., Perlaki, G., Németh, L., Hanna, S., Takács, G., Szabó, I., Bajnok, L., Vereczkei, A., Dóczi, T., Janszky, J., Komoly, S., Örs, H. P., Lánárd, L., & Karadi, Z. (2012). Gustatory perception alterations in obesity: An fMRI study. Brain Res, 1473, 131–140.PubMedCrossRefGoogle Scholar
  245. Takemura, H., Samejima, K., Vogels, R., Sakagami, M., & Okuda, J. (2011). Stimulus-dependent adjustment of reward prediction error in the midbrain. PloS One, 6.Google Scholar
  246. Thomas, J. M., Higgs, S., Dourish, C. T., Hansen, P. C., Harmer, C. J., & McCabe, C. (2015). Satiation attenuates BOLD activity in brain regions involved in reward and increases activity in dorsolateral prefrontal cortex: An fMRI study in healthy volunteers. Am J Clin Nutr, 101, 697–704.PubMedCrossRefGoogle Scholar
  247. Torta, D. M. E., Costa, T., Duca, S., Fox, P. T., & Cauda, F. (2013). Parcellation of the cingulate cortex at rest and during tasks: A meta-analytic clustering and experimental study. Frontiers in Human Neuroscience, 7(June), 275. Scholar
  248. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. a. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage, 16(3 Pt 1), 765–780. Scholar
  249. Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13. Scholar
  250. Uddin, L. Q., Kinnison, J., Pessoa, L., & Anderson, M. L. (2014). Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. Journal of Cognitive Neuroscience, 26(1), 16–27. Scholar
  251. Uddin, L. Q., & Menon, V. (2009). The anterior insula in autism: Under-connected and under-examined. Neuroscience and Biobehavioral Reviews, 33(8), 1198–1203. Scholar
  252. Uher, R., Treasure, J., Heining, M., Brammer, M. J., & Campbell, I. C. (2006). Cerebral processing of food-related stimuli: Effects of fasting and gender. Behav Brain Res, 169, 111–119.PubMedCrossRefGoogle Scholar
  253. Urban, N. B. L., Slifstein, M., Meda, S., Xu, X., Ayoub, R., Medina, O., Pearlson, G. D., Krystal, J. H., & Abi-Dargham, A. (2012). Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging. PsychopharmacologY. (Berl), 221, 67–77.CrossRefGoogle Scholar
  254. Utter, A. A., & Basso, M. A. (2008). The basal ganglia: An overview of circuits and function. Neuroscience and Biobehavioral Reviews, 32(3), 333–342. Scholar
  255. Vaidya, J. G., Knutson, B., O’Leary, D. S., Block, R. I., & Magnotta, V. (2013). Neural Sensitivity to Absolute and Relative Anticipated Reward in Adolescents. PLoS One, 8, e58708.PubMedPubMedCentralCrossRefGoogle Scholar
  256. Vaina, L. M. (1989). Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans. Biological Cybernetics, 61(5), 347–359. Scholar
  257. van Bloemendaal, L., Veltman, D. J., Ten Kulve, J. S., Groot, P. F. C., Ruhe, H. G., Barkhof, F., et al. (2015). Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans. Diabetes, Obesity and Metabolism, 17(9), 878–886. Scholar
  258. van den Bos, W., Talwar, A., & McClure, S. M. (2013). Neural Correlates of Reinforcement Learning and Social Preferences in Competitive Bidding. J Neurosci, 33, 2137–2146.PubMedPubMedCentralCrossRefGoogle Scholar
  259. Van Der Vegt, J. P. M., Hulme, O. J., Zittel, S., Madsen, K. H., Weiss, M. M., Buhmann, C., Bloem, B. R., Münchau, A., & Siebner, H. R. (2013). Attenuated neural response to gamble outcomes in drug-naive patients with Parkinson’s disease. Brain, 136, 1192–1203.PubMedCrossRefGoogle Scholar
  260. Van Leijenhorst, L., Zanolie, K., Van Meel, C. S., Westenberg, P. M., Rombouts, S. A. R. B., & Crone, E. A. (2010). What motivates the adolescent? brain regions mediating reward sensitivity across adolescence. Cereb Cortex, 20, 61–69.PubMedCrossRefGoogle Scholar
  261. Varnum, M. E. W., Shi, Z., Chen, A., Qiu, J., & Han, S. (2014). When “Your” reward is the same as “My” reward: Self-construal priming shifts neural responses to own vs. friends’ rewards. Neuroimage, 87, 164–169. Scholar
  262. Veldhuizen, M. G., Albrecht, J., Zelano, C., Boesveldt, S., Breslin, P., & Lundström, J. N. (2011). Identification of human gustatory cortex by activation likelihood estimation. Human Brain Mapping, 32(12), 2256–2266. Scholar
  263. Völlm, B., Richardson, P., McKie, S., Elliott, R., Dolan, M., & Deakin, B. (2007). Neuronal correlates of reward and loss in Cluster B personality disorders: a functional magnetic resonance imaging study. Psychiatry Research: NeuroimaginG., 156(2), 151–167.PubMedCrossRefGoogle Scholar
  264. Votinov, M., Pripfl, J., Windischberger, C., Sailer, U., & Lamm, C. (2015). Better you lose than I do: Neural networks involved in winning and losing in a real time strictly competitive game. Sci Rep, 5, 11017. Scholar
  265. Walter, M., Bermpohl, F., Mouras, H., Schiltz, K., Tempelmann, C., Rotte, M., Heinze, H. J., Bogerts, B., & Northoff, G. (2008). Distinguishing specific sexual and general emotional effects in fMRI-Subcortical and cortical arousal during erotic picture viewing. Neuroimage, 40, 1482–1494.PubMedCrossRefGoogle Scholar
  266. Waltz, J. A., Schweitzer, J. B., Ross, T. J., Kurup, P. K., Salmeron, B. J., Rose, E. J., Gold, J. M., & Stein, E. A. (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology, 35(12), 2427–2439. Scholar
  267. Wang, G. J., Volkow, N. D., Telang, F., Jayne, M., Ma, J., Rao, M., Zhu, W., Wong, C. T., Pappas, N. R., Geliebter, A., & Fowler, J. S. (2004). Exposure to appetitive food stimuli markedly activates the human brain. NeuroImage, 21(4), 1790–1797. Scholar
  268. Wehrum, S., Klucken, T., Kagerer, S., Walter, B., Hermann, A., Vaitl, D., & Stark, R. (2013). Gender Commonalities and Differences in the Neural Processing of Visual Sexual Stimuli. J Sex Med, 10, 1328–1342.PubMedCrossRefGoogle Scholar
  269. Wehrum-Osinsky, S., Klucken, T., Kagerer, S., Walter, B., Hermann, A., & Stark, R. (2014). At the second glance: Stability of neural responses toward visual sexual stimuli. J Sex Med, 11, 2720–2737.PubMedCrossRefGoogle Scholar
  270. Weil, R. S., Furl, N., Ruff, C. C., Symmonds, M., Flandin, G., Dolan, R. J., Driver, J., & Rees, G. (2010). Rewarding feedback after correct visual discriminations has both general and specific influences on visual cortex. Journal of Neurophysiology, 104(3), 1746–1757. Scholar
  271. Weis, T., Brechmann, A., Puschmann, S., & Thiel, C. M. (2013). Feedback that confirms reward expectation triggers auditory cortex activity. J Neurophysiol, 110, 1860–1868.PubMedCrossRefGoogle Scholar
  272. Wilbertz, G., Tebartz van Elst, L., Delgado, M. R., Maier, S., Feige, B., Philipsen, A., & Blechert, J. (2012). Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. Neuroimage, 60, 353–361. Scholar
  273. Wimmer, G. E., Braun, E. K., Daw, N. D., & Shohamy, D. (2014). Episodic memory encoding interferes with reward learning and decreases striatal prediction errors. J Neurosci, 34, 14901–14912.PubMedPubMedCentralCrossRefGoogle Scholar
  274. Wu, C. C., Samanez-Larkin, G. R., Katovich, K., & Knutson, B. (2014). Affective traits link to reliable neural markers of incentive anticipation. Neuroimage, 84, 279–289.PubMedCrossRefGoogle Scholar
  275. Xue, G., Lu, Z., Levin, I. P., Weller, J. A., Li, X., & Bechara, A. (2009). Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cerebral Cortex, 19(5), 1019–1027. Scholar
  276. Yalpe, Z., & Arsalidou, M. (2018). N-back working memory task. Meta-analyses of normative fMRI studies with children. Child Development, 89(6), 2010–2022.CrossRefGoogle Scholar
  277. Ye, Z., Hammer, A., Camara, E., & Münte, T. F. (2011). Pramipexole modulates the neural network of reward anticipation. Hum Brain Mapp, 32, 800–811.PubMedCrossRefGoogle Scholar
  278. Yoon, J. H., Larson, P., Grandelis, A., La, C., Cui, E., Carter, C. S., & Minzenberg, M. J. (2014). Delay period activity of the Substantia Nigra during proactive control of response selection as determined by a novel fMRI localization method. Journal of Cognitive Neuroscience, 27(6), 1238–1248. Scholar
  279. Zalla, T., Koechlin, E., Pietrini, P., Basso, G., Aquino, P., Sirigu, A., & Grafman, J. (2000). Differential amygdala responses to winning and losing: A functional magnetic resonance imaging study in humans. The European Journal of Neuroscience, 12(5), 1764–1770. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PsychologyNational Research University Higher School of EconomicsMoscowRussian Federation
  2. 2.Department of Psychology, Faculty of HealthYork UniversityTorontoCanada
  3. 3.Department of Psychology, Faculty of Arts and ScienceUniversity of TorontoTorontoCanada
  4. 4.Skolkovo Institute of Science and TechnologyMoscowRussian Federation

Personalised recommendations