Advertisement

Boys with autism spectrum disorder have distinct cortical folding patterns underpinning impaired self-regulation: a surface-based morphometry study

  • Hsing-Chang Ni
  • Hsiang-Yuan Lin
  • Yu-Chieh Chen
  • Wen-Yih Isaac Tseng
  • Susan Shur-Fen GauEmail author
Original Research
  • 48 Downloads

Abstract

Although impaired self-regulation (dysregulation) in autism spectrum disorder (ASD) garnered increasing awareness, the neural mechanism of dysregulation in ASD are far from conclusive. To complement our previous voxel-based morphometry findings, we estimated the cortical thickness, surface area, and local gyrification index based on the surface-based morphometry from structural MRI images in 85 ASD and 65 typically developing control (TDC) boys, aged 7–17 years. Levels of dysregulation were measured by the sum of T-scores of Attention, Aggression, and Anxiety/Depression subscales on the Child Behavior Checklist. We found both ASD and TDC shared similar relationships between dysregulation and cortical folding patterns in the left superior and inferior temporal gyri and the left premotor cortex. Significant diagnosis by dysregulation interactions in cortical folding patterns were identified over the right middle frontal and right lateral orbitofrontal regions. The statistical significance of greater local gyrification index in ASD than TDC in several brain regions disappeared when the level of dysregulation was considered. The findings of shared and distinct neural correlates underpinning dysregulation between ASD and TDC may facilitate the development of targeted interventions in the future. The present work also demonstrates that inter-subject variations in self-regulation may explain some extents of ASD-associated brain morphometric differences, likely suggesting that dysregulation is one of the yardsticks for dissecting the heterogeneity of ASD.

Keywords

Autism spectrum disorder Structural MRI Dysregulation Surface-based morphometry Child behavior checklist 

Notes

Acknowledgments

This work was supported by grants from National Science Council of Taiwan (NSC97-3112-B-002-009, NSC98-3112-B-002-004, NSC 99-2627-B-002-015, NSC 100-2627-B-002-014, NSC 101-2627-B-002-002, NSC 101-2314-B-002-136-MY3), National Taiwan University (AIM for Top University Excellent Research Project: 102R892103), National Taiwan University Hospital (NTUH101-S1910), National Health Research Institute (NHRI-EX104-10404PI, NHRI-EX105-10404PI, NHRI-EX106-10404PI), Taiwan and in part by the Department of Medical Imaging and 3 T MRI Lab in National Taiwan University Hospital. We are grateful for all participants and their parents for taking part in the study.

Funding information

This work was supported by grants from National Science Council of Taiwan (NSC97-3112-B-002-009, NSC98-3112-B-002-004, NSC 99-2627-B-002-015, NSC 100-2627-B-002-014, NSC 101-2627-B-002-002, NSC 101-2314-B-002-136-MY3), National Taiwan University (AIM for Top University Excellent Research Project: 102R892103), National Taiwan University Hospital (NTUH101-S1910), National Health Research Institute (NHRI-EX104-10404PI, NHRI-EX105-10404PI, NHRI-EX106-10404PI), Taiwan and in part by the Department of Medical Imaging and 3 T MRI Lab in National Taiwan University Hospital.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Ethical approval

The Research Ethics Committee at the NTUH approved our study before implementation (200903062R, 201201006RIB; ClinicalTrials.gov number, NCT00916851, NCT01582256). Besides the ethical standards of the Committee at the NTUH on human experimentation, all procedures contributing to this work also comply with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

The procedures and purpose of the study were explained face-to-face to the participants and their parents, who then provided written informed consent.

Supplementary material

11682_2019_199_MOESM1_ESM.docx (729 kb)
ESM 1 (DOCX 728 kb)

References

  1. Achenbach, T. M. (1991). Manual for the child behavior checklist/4–18 and 1991 profile. Vermont: Department of Psychiatry, University of Vermont,Burlington.Google Scholar
  2. Althoff, R. R., Verhulst, F. C., Rettew, D. C., Hudziak, J. J., & van der Ende, J. (2010). Adult outcomes of childhood dysregulation: a 14-year follow-up study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(11), 1105–1116.  https://doi.org/10.1016/j.jaac.2010.08.006.Google Scholar
  3. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17–42.  https://doi.org/10.1007/s11065-006-9002-x.Google Scholar
  4. Ayer, L., Althoff, R., Ivanova, M., Rettew, D., Waxler, E., Sulman, J., & Hudziak, J. (2009). Child behavior checklist juvenile bipolar disorder (CBCL-JBD) and CBCL posttraumatic stress problems (CBCL-PTSP) scales are measures of a single dysregulatory syndrome. Journal of Child Psychology and Psychiatry, 50(10), 1291–1300.  https://doi.org/10.1111/j.1469-7610.2009.02089.x.Google Scholar
  5. Bachevalier, J., & Loveland, K. A. (2006). The orbitofrontal-amygdala circuit and self-regulation of social-emotional behavior in autism. Neuroscience and Biobehavioral Reviews, 30(1), 97–117.  https://doi.org/10.1016/j.neubiorev.2005.07.002.Google Scholar
  6. Bedford, S. A., Park, M. T. M., Devenyi, G. A., Tullo, S., Germann, J., Patel, R., et al. (2019). Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Molecular Psychiatry.  https://doi.org/10.1038/s41380-019-0420-6.
  7. Carroll, J. B. (1997). Contemporary intellectual assessment: Theories, tests, and issues. New York: The Guilford Press.Google Scholar
  8. Chen, Y. L., Shen, L. J., & Gau, S. S. (2017). The mandarin version of the kiddie-schedule for affective disorders and schizophrenia-epidemiological version for DSM-5 - a psychometric study. Journal of the Formosan Medical Association, 116(9), 671–678.  https://doi.org/10.1016/j.jfma.2017.06.013.Google Scholar
  9. Chiang, H. L., Kao, W. C., Chou, M. C., Chou, W. J., Chiu, Y. N., Wu, Y. Y., & Gau, S. S. (2018). School dysfunction in youth with autistic spectrum disorder in Taiwan: The effect of subtype and ADHD. Autism Research, 11(6), 857–869.  https://doi.org/10.1002/aur.1923.Google Scholar
  10. Clouchoux, C., Kudelski, D., Gholipour, A., Warfield, S. K., Viseur, S., Bouyssi-Kobar, M., Mari, J. L., Evans, A. C., du Plessis, A. J., & Limperopoulos, C. (2012). Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Structure & Function, 217(1), 127–139.  https://doi.org/10.1007/s00429-011-0325-x.Google Scholar
  11. Coombes, S. A., Corcos, D. M., Pavuluri, M. N., & Vaillancourt, D. E. (2012). Maintaining force control despite changes in emotional context engages dorsomedial prefrontal and premotor cortex. Cerebral Cortex, 22(3), 616–627.  https://doi.org/10.1093/cercor/bhr141.Google Scholar
  12. Courchesne, E., Campbell, K., & Solso, S. (2011). Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Research, 1380, 138–145.  https://doi.org/10.1016/j.brainres.2010.09.101.Google Scholar
  13. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.  https://doi.org/10.1006/nimg.1998.0395.Google Scholar
  14. Dale Purves, G. J. A., Fitzpatrick, D., Katz, L. C., LaMantia, A.-S., McNamara, J. O., & Williams, S. M. (2001). Neuroscience (2nd ed.). Sunderland: Sinauer Associates.Google Scholar
  15. Dickerson, B. C., Feczko, E., Augustinack, J. C., Pacheco, J., Morris, J. C., Fischl, B., & Buckner, R. L. (2009). Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area. Neurobiology of Aging, 30(3), 432–440.  https://doi.org/10.1016/j.neurobiolaging.2007.07.022.Google Scholar
  16. Dijkhuis, R. R., Ziermans, T. B., Van Rijn, S., Staal, W. G., & Swaab, H. (2017). Self-regulation and quality of life in high-functioning young adults with autism. Autism, 21(7), 896–906.  https://doi.org/10.1177/1362361316655525.Google Scholar
  17. Ecker, C. (2017). The neuroanatomy of autism spectrum disorder: An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism, 21(1), 18–28.  https://doi.org/10.1177/1362361315627136.Google Scholar
  18. Ecker, C., Bookheimer, S. Y., & Murphy, D. G. (2015). Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurology, 14(11), 1121–1134.  https://doi.org/10.1016/S1474-4422(15)00050-2.Google Scholar
  19. Climie, E. A., & Rostad, K. (2011). Test review: Wechsler adult intelligence scale. Journal of Psychoeducational Assessment, 29(6), 581–586.Google Scholar
  20. Etkin, A., Buchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews. Neuroscience, 16(11), 693–700.  https://doi.org/10.1038/nrn4044.Google Scholar
  21. Farley, J. P., & Kim-Spoon, J. (2014). The development of adolescent self-regulation: reviewing the role of parent, peer, friend, and romantic relationships. Journal of Adolescence, 37(4), 433–440.  https://doi.org/10.1016/j.adolescence.2014.03.009.Google Scholar
  22. Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781.  https://doi.org/10.1016/j.neuroimage.2012.01.021.Google Scholar
  23. Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage, 23(Suppl 1), S69–S84.  https://doi.org/10.1016/j.neuroimage.2004.07.016.Google Scholar
  24. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207.  https://doi.org/10.1006/nimg.1998.0396.Google Scholar
  25. Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Salat, D. H., Greve, D. N., Fischl, B., Dale, A. M., & Walhovd, K. B. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 2001–2012.  https://doi.org/10.1093/cercor/bhn232.Google Scholar
  26. Gau, S. S., Chong, M. Y., Chen, T. H., & Cheng, A. T. (2005). A 3-year panel study of mental disorders among adolescents in Taiwan. The American Journal of Psychiatry, 162(7), 1344–1350.  https://doi.org/10.1176/appi.ajp.162.7.1344.Google Scholar
  27. Gau, S. S., Chou, M. C., Lee, J. C., Wong, C. C., Chou, W. J., Chen, M. F., et al. (2010). Behavioral problems and parenting style among Taiwanese children with autism and their siblings. Psychiatry and Clinical Neurosciences, 64(1), 70–78.  https://doi.org/10.1111/j.1440-1819.2009.02034.x.Google Scholar
  28. Ghosh, S. S., Kakunoori, S., Augustinack, J., Nieto-Castanon, A., Kovelman, I., Gaab, N., Christodoulou, J. A., Triantafyllou, C., Gabrieli, J. D. E., & Fischl, B. (2010). Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. Neuroimage, 53(1), 85–93.  https://doi.org/10.1016/j.neuroimage.2010.05.075.Google Scholar
  29. Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586.  https://doi.org/10.1016/j.biopsych.2007.05.031.Google Scholar
  30. Gullone, E., Hughes, E. K., King, N. J., & Tonge, B. (2010). The normative development of emotion regulation strategy use in children and adolescents: a 2-year follow-up study. Journal of Child Psychology and Psychiatry, 51(5), 567–574.  https://doi.org/10.1111/j.1469-7610.2009.02183.x.Google Scholar
  31. Hagler, D. J., Jr., Saygin, A. P., & Sereno, M. I. (2006). Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage, 33(4), 1093–1103.  https://doi.org/10.1016/j.neuroimage.2006.07.036.Google Scholar
  32. Hardan, A. Y., Libove, R. A., Keshavan, M. S., Melhem, N. M., & Minshew, N. J. (2009). A preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism. Biological Psychiatry, 66(4), 320–326.  https://doi.org/10.1016/j.biopsych.2009.04.024.Google Scholar
  33. Hegarty, J. P., 2nd, Pegoraro, L. F. L., Lazzeroni, L. C., Raman, M. M., Hallmayer, J. F., Monterrey, J. C., et al. (2019). Genetic and environmental influences on structural brain measures in twins with autism spectrum disorder. Molecular Psychiatry.  https://doi.org/10.1038/s41380-018-0330-z.
  34. Hilgetag, C. C., & Barbas, H. (2006). Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Computational Biology, 2(3), e22.  https://doi.org/10.1371/journal.pcbi.0020022.Google Scholar
  35. Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174–180.  https://doi.org/10.1016/j.tics.2012.01.006.Google Scholar
  36. Jahromi, L. B., Meek, S. E., & Ober-Reynolds, S. (2012). Emotion regulation in the context of frustration in children with high functioning autism and their typical peers. Journal of Child Psychology and Psychiatry, 53(12), 1250–1258.  https://doi.org/10.1111/j.1469-7610.2012.02560.x.Google Scholar
  37. Joshi, G., Wozniak, J., Fitzgerald, M., Faraone, S., Fried, R., Galdo, M., Furtak, S. L., Conroy, K., Kilcullen, J. R., Belser, A., & Biederman, J. (2018). High risk for severe emotional dysregulation in psychiatrically referred youth with autism Spectrum disorder: a controlled study. Journal of Autism and Developmental Disorders, 48(9), 3101–3115.  https://doi.org/10.1007/s10803-018-3542-9.Google Scholar
  38. Kaat, A. J., Lecavalier, L., & Aman, M. G. (2014). Validity of the aberrant behavior checklist in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(5), 1103–1116.  https://doi.org/10.1007/s10803-013-1970-0.Google Scholar
  39. Katuwal, G. J., Baum, S. A., Cahill, N. D., Dougherty, C. C., Evans, E., Evans, D. W., Moore, G. J., & Michael, A. M. (2016). Inter-method discrepancies in brain volume estimation may drive inconsistent findings in autism. Frontiers in Neuroscience, 10, 439.  https://doi.org/10.3389/fnins.2016.00439.Google Scholar
  40. Kelley, W. M., Wagner, D. D., & Heatherton, T. F. (2015). In search of a human self-regulation system. Annual Review of Neuroscience, 38, 389–411.  https://doi.org/10.1146/annurev-neuro-071013-014243.Google Scholar
  41. Kochunov, P., Glahn, D. C., Fox, P. T., Lancaster, J. L., Saleem, K., Shelledy, W., Zilles, K., Thompson, P. M., Coulon, O., Mangin, J. F., Blangero, J., & Rogers, J. (2010). Genetics of primary cerebral gyrification: heritability of length, depth and area of primary sulci in an extended pedigree of Papio baboons. Neuroimage, 53(3), 1126–1134.  https://doi.org/10.1016/j.neuroimage.2009.12.045.Google Scholar
  42. Kohli, J. S., Kinnear, M. K., Fong, C. H., Fishman, I., Carper, R. A., & Muller, R. A. (2019). Local cortical Gyrification is increased in children with autism spectrum disorders, but decreases rapidly in adolescents. Cerebral Cortex, 29(6), 2412–2423.  https://doi.org/10.1093/cercor/bhy111.Google Scholar
  43. Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17(1), 26–49.  https://doi.org/10.1016/j.tics.2012.10.011.Google Scholar
  44. Kweon, K., Lee, H. J., Park, K. J., Joo, Y., & Kim, H. W. (2016). Child behavior checklist profiles in adolescents with bipolar and depressive disorders. Comprehensive Psychiatry, 70, 152–158.  https://doi.org/10.1016/j.comppsych.2016.07.007.Google Scholar
  45. Langner, R., Leiberg, S., Hoffstaedter, F., & Eickhoff, S. B. (2018). Towards a human self-regulation system: common and distinct neural signatures of emotional and behavioural control. Neuroscience and Biobehavioral Reviews, 90, 400–410.  https://doi.org/10.1016/j.neubiorev.2018.04.022.Google Scholar
  46. Lefebvre, A., Beggiato, A., Bourgeron, T., & Toro, R. (2015). Neuroanatomical diversity of Corpus callosum and brain volume in autism: meta-analysis, analysis of the autism brain imaging data exchange project, and simulation. Biological Psychiatry, 78(2), 126–134.  https://doi.org/10.1016/j.biopsych.2015.02.010.Google Scholar
  47. Li, G., Wang, L., Shi, F., Lyall, A. E., Lin, W., Gilmore, J. H., & Shen, D. (2014). Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. The Journal of Neuroscience, 34(12), 4228–4238.  https://doi.org/10.1523/JNEUROSCI.3976-13.2014.Google Scholar
  48. Lin, H. Y., Ni, H. C., Lai, M. C., Tseng, W. I., & Gau, S. S. (2015). Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent. Molecular Autism, 6, 29.  https://doi.org/10.1186/s13229-015-0022-3.Google Scholar
  49. Lin, P. I., Kuo, P. H., Chen, C. H., Wu, J. Y., Gau, S. S., Wu, Y. Y., & Liu, S. K. (2013). Runs of homozygosity associated with speech delay in autism in a taiwanese han population: evidence for the recessive model. PLoS One, 8(8), e72056.  https://doi.org/10.1371/journal.pone.0072056.Google Scholar
  50. Marcus, D. S., Harms, M. P., Snyder, A. Z., Jenkinson, M., Wilson, J. A., Glasser, M. F., et al. (2013). Human connectome project informatics: quality control, database services, and data visualization. Neuroimage, 80, 202–219.  https://doi.org/10.1016/j.neuroimage.2013.05.077.Google Scholar
  51. Marie, D., Maingault, S., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2016). Surface-based morphometry of cortical thickness and surface area associated with Heschl's gyri duplications in 430 healthy volunteers. Frontiers in Human Neuroscience, 10, 69.  https://doi.org/10.3389/fnhum.2016.00069.Google Scholar
  52. Marquand, A. F., Rezek, I., Buitelaar, J., & Beckmann, C. F. (2016). Understanding heterogeneity in clinical cohorts using normative models: Beyond case-control studies. Biological Psychiatry, 80(7), 552–561.  https://doi.org/10.1016/j.biopsych.2015.12.023.Google Scholar
  53. Mazefsky, C. A., Borue, X., Day, T. N., & Minshew, N. J. (2014). Emotion regulation patterns in adolescents with high-functioning autism spectrum disorder: comparison to typically developing adolescents and association with psychiatric symptoms. Autism Research, 7(3), 344–354.  https://doi.org/10.1002/aur.1366.Google Scholar
  54. Mazefsky, C. A., Herrington, J., Siegel, M., Scarpa, A., Maddox, B. B., Scahill, L., & White, S. W. (2013). The role of emotion regulation in autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 52(7), 679–688.  https://doi.org/10.1016/j.jaac.2013.05.006.Google Scholar
  55. Mazefsky, C. A., Yu, L., White, S. W., Siegel, M., & Pilkonis, P. A. (2018). The emotion dysregulation inventory: psychometric properties and item response theory calibration in an autism spectrum disorder sample. Autism Research, 11(6), 928–941.  https://doi.org/10.1002/aur.1947.Google Scholar
  56. McClelland, M. M., & Cameron, C. E. (2011). Self-regulation and academic achievement in elementary school children. New Directions for Child and Adolescent Development, 2011(133), 29–44.  https://doi.org/10.1002/cd.302.Google Scholar
  57. Mesulam, M. M. (1998). From sensation to cognition. Brain, 121(Pt 6), 1013–1052.  https://doi.org/10.1093/brain/121.6.1013.Google Scholar
  58. Ni, H. C., Lin, H. Y., Tseng, W. I., Chiu, Y. N., Wu, Y. Y., Tsai, W. C., & Gau, S. S. (2018). Neural correlates of impaired self-regulation in male youths with autism spectrum disorder: a voxel-based morphometry study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 82, 233–241.  https://doi.org/10.1016/j.pnpbp.2017.11.008.Google Scholar
  59. Nigg, J. T. (2017). Annual research review: on the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, 58(4), 361–383.  https://doi.org/10.1111/jcpp.12675.Google Scholar
  60. Nolen-Hoeksema, S. (2012). Emotion regulation and psychopathology: the role of gender. Annual Review of Clinical Psychology, 8, 161–187.  https://doi.org/10.1146/annurev-clinpsy-032511-143109.Google Scholar
  61. Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage, 23(2), 483–499.  https://doi.org/10.1016/j.neuroimage.2004.06.030.Google Scholar
  62. Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., Jacobson, K., Lyons, M. J., Grant, M. D., Franz, C. E., Xian, H., Tsuang, M., Fischl, B., Seidman, L., Dale, A., & Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11), 2728–2735.  https://doi.org/10.1093/cercor/bhp026.Google Scholar
  63. Patel, S., Day, T. N., Jones, N., & Mazefsky, C. A. (2017). Association between anger rumination and autism symptom severity, depression symptoms, aggression, and general dysregulation in adolescents with autism spectrum disorder. Autism, 21(2), 181–189.  https://doi.org/10.1177/1362361316633566.Google Scholar
  64. Paus, T. (2018). Investigating the role of micronutrients in brain development and psychiatric disorders via magnetic resonance imaging. JAMA Psychiatry, 75(9), 880–882.  https://doi.org/10.1001/jamapsychiatry.2018.1255.Google Scholar
  65. Pienaar, R., Fischl, B., Caviness, V., Makris, N., & Grant, P. E. (2008). A methodology for analyzing curvature in the developing brain from preterm to adult. International Journal of Imaging Systems and Technology, 18(1), 42–68.  https://doi.org/10.1002/ima.v18:1.Google Scholar
  66. Pitskel, N. B., Bolling, D. Z., Kaiser, M. D., Pelphrey, K. A., & Crowley, M. J. (2014). Neural systems for cognitive reappraisal in children and adolescents with autism spectrum disorder. Developmental Cognitive Neuroscience, 10, 117–128.  https://doi.org/10.1016/j.dcn.2014.08.007.Google Scholar
  67. Pua, E. P. K., Malpas, C. B., Bowden, S. C., & Seal, M. L. (2018). Different brain networks underlying intelligence in autism spectrum disorders. Human Brain Mapping, 39(8), 3253–3262.  https://doi.org/10.1002/hbm.24074.Google Scholar
  68. Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241(4862), 170–176.Google Scholar
  69. Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends in Neurosciences, 18(9), 383–388.Google Scholar
  70. Richey, J. A., Damiano, C. R., Sabatino, A., Rittenberg, A., Petty, C., Bizzell, J., Voyvodic, J., Heller, A. S., Coffman, M. C., Smoski, M., Davidson, R. J., & Dichter, G. S. (2015). Neural mechanisms of emotion regulation in autism Spectrum disorder. Journal of Autism and Developmental Disorders, 45(11), 3409–3423.  https://doi.org/10.1007/s10803-015-2359-z.Google Scholar
  71. Rieffe, C., De Bruine, M., De Rooij, M., & Stockmann, L. (2014). Approach and avoidant emotion regulation prevent depressive symptoms in children with an autism Spectrum disorder. International Journal of Developmental Neuroscience, 39, 37–43.  https://doi.org/10.1016/j.ijdevneu.2014.06.003.Google Scholar
  72. Rolls, E. T. (2019). The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia, 128, 14–43.  https://doi.org/10.1016/j.neuropsychologia.2017.09.021.Google Scholar
  73. Ronan, L., & Fletcher, P. C. (2015). From genes to folds: a review of cortical gyrification theory. Brain Structure & Function, 220(5), 2475–2483.  https://doi.org/10.1007/s00429-014-0961-z.Google Scholar
  74. Rosen, A. F. G., Roalf, D. R., Ruparel, K., Blake, J., Seelaus, K., Villa, L. P., Ciric, R., Cook, P. A., Davatzikos, C., Elliott, M. A., Garcia de la Garza, A., Gennatas, E. D., Quarmley, M., Schmitt, J. E., Shinohara, R. T., Tisdall, M. D., Craddock, R. C., Gur, R. E., Gur, R. C., & Satterthwaite, T. D. (2018). Quantitative assessment of structural image quality. Neuroimage, 169, 407–418.  https://doi.org/10.1016/j.neuroimage.2017.12.059.Google Scholar
  75. Samson, A. C., Hardan, A. Y., Podell, R. W., Phillips, J. M., & Gross, J. J. (2015). Emotion regulation in children and adolescents with autism spectrum disorder. Autism Research, 8(1), 9–18.  https://doi.org/10.1002/aur.1387.Google Scholar
  76. Samson, A. C., Phillips, J. M., Parker, K. J., Shah, S., Gross, J. J., & Hardan, A. Y. (2014). Emotion dysregulation and the core features of autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(7), 1766–1772.  https://doi.org/10.1007/s10803-013-2022-5.Google Scholar
  77. Schaer, M., Cuadra, M. B., Schmansky, N., Fischl, B., Thiran, J. P., & Eliez, S. (2012). How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index. Journal of Visualized Experiments, 59, e3417.  https://doi.org/10.3791/3417.Google Scholar
  78. Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. Neuroimage, 22(3), 1060–1075.  https://doi.org/10.1016/j.neuroimage.2004.03.032.Google Scholar
  79. Segonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529.  https://doi.org/10.1109/TMI.2006.887364.Google Scholar
  80. Sidman, R. L., & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: a review. Brain Research, 62(1), 1–35.Google Scholar
  81. Silvers, J. A., Wager, T. D., Weber, J., & Ochsner, K. N. (2015). The neural bases of uninstructed negative emotion modulation. Social Cognitive and Affective Neuroscience, 10(1), 10–18.  https://doi.org/10.1093/scan/nsu016.Google Scholar
  82. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.  https://doi.org/10.1109/42.668698.Google Scholar
  83. Spencer, T. J., Faraone, S. V., Surman, C. B., Petty, C., Clarke, A., Batchelder, H., et al. (2011). Toward defining deficient emotional self-regulation in children with attention-deficit/hyperactivity disorder using the child behavior checklist: a controlled study. Postgraduate Medicine, 123(5), 50–59.  https://doi.org/10.3810/pgm.2011.09.2459.Google Scholar
  84. Suckling, J. (2011). Correlated covariates in ANCOVA cannot adjust for pre-existing differences between groups. Schizophrenia Research, 126(1–3), 310–311.  https://doi.org/10.1016/j.schres.2010.08.034.Google Scholar
  85. Theurel, A., & Gentaz, E. (2018). The regulation of emotions in adolescents: age differences and emotion-specific patterns. PLoS One, 13(6), e0195501.  https://doi.org/10.1371/journal.pone.0195501.Google Scholar
  86. Toro, R., Perron, M., Pike, B., Richer, L., Veillette, S., Pausova, Z., & Paus, T. (2008). Brain size and folding of the human cerebral cortex. Cerebral Cortex, 18(10), 2352–2357.  https://doi.org/10.1093/cercor/bhm261.Google Scholar
  87. White, T., Andreasen, N. C., & Nopoulos, P. (2002). Brain volumes and surface morphology in monozygotic twins. Cerebral Cortex, 12(5), 486–493.Google Scholar
  88. White, T., Su, S., Schmidt, M., Kao, C. Y., & Sapiro, G. (2010). The development of gyrification in childhood and adolescence. Brain and Cognition, 72(1), 36–45.  https://doi.org/10.1016/j.bandc.2009.10.009.Google Scholar
  89. Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., Duggirala, R., & Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage, 53(3), 1135–1146.  https://doi.org/10.1016/j.neuroimage.2009.12.028.Google Scholar
  90. Wittfoth, M., Schroder, C., Schardt, D. M., Dengler, R., Heinze, H. J., & Kotz, S. A. (2010). On emotional conflict: interference resolution of happy and angry prosody reveals valence-specific effects. Cerebral Cortex, 20(2), 383–392.  https://doi.org/10.1093/cercor/bhp106.Google Scholar
  91. Yamagata, B., Itahashi, T., Fujino, J., Ohta, H., Takashio, O., Nakamura, M., Kato, N., Mimura, M., Hashimoto, R. I., & Aoki, Y. Y. (2019). Cortical surface architecture endophenotype and correlates of clinical diagnosis of autism spectrum disorder. Psychiatry and Clinical Neurosciences, 73(7), 409–415.  https://doi.org/10.1111/pcn.12854.Google Scholar
  92. Yang, D. Y., Beam, D., Pelphrey, K. A., Abdullahi, S., & Jou, R. J. (2016). Cortical morphological markers in children with autism: a structural magnetic resonance imaging study of thickness, area, volume, and gyrification. Molecular Autism, 7, 11.  https://doi.org/10.1186/s13229-016-0076-x.Google Scholar
  93. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165.  https://doi.org/10.1152/jn.00338.2011.Google Scholar
  94. Zielinski, B. A., Prigge, M. B., Nielsen, J. A., Froehlich, A. L., Abildskov, T. J., Anderson, J. S., et al. (2014). Longitudinal changes in cortical thickness in autism and typical development. Brain, 137(Pt 6), 1799–1812.  https://doi.org/10.1093/brain/awu083.Google Scholar
  95. Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H. J. (1988). The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology, 179(2), 173–179.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hsing-Chang Ni
    • 1
    • 2
  • Hsiang-Yuan Lin
    • 3
  • Yu-Chieh Chen
    • 1
    • 3
  • Wen-Yih Isaac Tseng
    • 4
    • 5
  • Susan Shur-Fen Gau
    • 1
    • 3
    • 4
    Email author
  1. 1.Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
  2. 2.Department of PsychiatryChang Gung Memorial HospitalLinkouTaiwan
  3. 3.Department of PsychiatryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
  4. 4.Graduate Institute of Brain and Mind SciencesNational Taiwan University College of MedicineTaipeiTaiwan
  5. 5.Institute of Medical Device and ImagingNational Taiwan University College of MedicineTaipeiTaiwan

Personalised recommendations