The impact of endurance training and table soccer on brain metabolites in schizophrenia

  • Boris-Stephan RauchmannEmail author
  • Farhad Ghaseminejad
  • Daniel Keeser
  • Katriona Keller-Varady
  • Thomas Schneider-Axmann
  • Shun Takahashi
  • Temmuz Karali
  • Gunther Helms
  • Peter Dechent
  • Isabel Maurus
  • Alkomiet Hasan
  • Thomas Wobrock
  • Birgit Ertl-Wagner
  • Andrea Schmitt
  • Berend Malchow
  • Peter Falkai
Original Research


Higher glutamate and glutamine (together: Glx) and lower N-acetyl-aspartate (NAA) levels were reported in schizophrenia. Endurance training normalizes NAA in the hippocampus, but its effects on other metabolites in the brain and the relationship of metabolites to clinical symptoms remain unknown. For 12 weeks, 20 schizophrenia inpatients (14 men, 6 women) and 23 healthy controls (16 men, 7 women) performed endurance training and a control group of 21 schizophrenia inpatients (15 men, 6 women) played table soccer. A computer-assisted cognitive performance training program was introduced after 6 weeks. We assessed cognitive performance, psychopathological symptoms, and everyday functioning at baseline and after 6 and 12 weeks and performed single voxel magnetic resonance spectroscopy of the hippocampus, left dorsolateral prefrontal cortex (DLPFC), and thalamus. We quantified NAA, Glx, total creatine (tCr), calculated NAA/tCr and Glx/tCr and correlated these ratios with physical fitness, clinical and neurocognitive scores, and everyday functioning. At baseline, in both schizophrenia groups NAA/tCr was lower in the left DLPFC and left hippocampus and Glx/tCr was lower in the hippocampus than in the healthy controls. After 6 weeks, NAA/tCr increased in the left DLPFC in both schizophrenia groups. Brain metabolites did not change significantly in the hippocampus or thalamus, but the correlation between NAA/tCr and Glx/tCr normalized in the left DLPFC. Global Assessment of Functioning improvements correlated with NAA/tCr changes in the left DLPFC. In our study, endurance training and table soccer induced normalization of brain metabolite ratios in the brain circuitry associated with neuronal and synaptic elements, including metabolites of the glutamatergic system.


Schizophrenia MRS Aerobic exercise NAA Glx Clinical symptoms 



Study concept and design: Falkai, Malchow, Rauchmann. Analysis and interpretation of data: Rauchmann, Ghaseminejad, Keller-Varady, Keeser, Karali, Schneider-Axmann. Drafting of the manuscript: Rauchmann, Ghaseminejad. Critical revision of the manuscript for important intellectual content: Rauchmann, Schmitt, Helms, Keeser, Hasan, Helms, Dechent, Takahashi, Maurus. Statistical analysis: Rauchmann, Schneider-Axmann. Administrative, technical, and material support: Falkai, Malchow, Ertl-Wagner. Study supervision: Falkai, Schmitt, Malchow. All authors contributed to and approved the final manuscript.


This research was funded by the grants Klinische Forschergruppe (KFO) 241 and PsyCourse (FA241/16–1) from the Deutsche Forschungsgemeinschaft (DFG). Further funding was received from the German Federal Ministry of Education and Research (BMBF) through the research network on psychiatric diseases ESPRIT (grant number 01EE1407E). The funding sources were not involved in study design, collection, analysis and interpretation of data, or writing of the report or in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

S. Takahashi, D. Keeser, F. Ghaseminejad, B.-S. Rauchmann, G. Helms, T. Karali, T. Schneider-Axmann, I. Maurus, K Keller-Varady, P. Dechent, B. Ertl-Wagner, and B. Malchow report no conflicts of interest. T. Wobrock was a member of the Advisory Board of Janssen Cilag and Otsuka/Lundbeck and has accepted paid speaking engagements for Alpine Biomed, AstraZeneca, Bristol Myers Squibb, Eli Lilly, I3G, Glaxo-Smith-Kline, Janssen Cilag, Novartis, Lundbeck, Otsuka, Roche, Sanofi-Aventis and Pfizer. He has received research grants from AstraZeneca, Cerbomed, I3G, and AOK (health insurance company). In addition, he received research support from The German Research Funding Organisation (DFG) and the Federal Ministry of Education and Research (BMBF). A. Hasan received honoraria from Desitin, Otsuka, Janssen-Cilag, and Lundbeck and was a member of the advisory boards of Roche, Janssen-Cilag, and Lundbeck. P. Falkai has been an honorary speaker for AstraZeneca, Bristol Myers Squibb, Lilly, Essex, GE Healthcare, GlaxoSmithKline, Janssen Cilag, Lundbeck, Otsuka, Pfizer, Servier, and Takeda and has been a member of the advisory boards of Janssen-Cilag, AstraZeneca, Lilly, and Lundbeck. A. Schmitt was an honorary speaker for TAD Pharma and Roche and a member of the Roche advisory board.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2019_198_MOESM1_ESM.docx (15 kb)
Supplementary Table 1 (DOCX 15.1 kb)
11682_2019_198_MOESM2_ESM.png (277 kb)
Supplementary Figure 1 A and B. Example spectra and VOI position in the left DLPFC. (PDF 841 kb)
11682_2019_198_MOESM3_ESM.png (254 kb)
Supplementary Figure 2 A and B. Example spectra and VOI position in the left hippocampus. (PDF 791 kb)
11682_2019_198_MOESM4_ESM.png (293 kb)
Supplementary Figure 3 A and B. Example spectra and VOI position in the right hippocampus. (PDF 776 kb)
11682_2019_198_MOESM5_ESM.png (286 kb)
Supplementary Figure 4 A and B. Example spectra and VOI position in the left thalamus. (PDF 844 kb)


  1. Arun, P., Moffett, J. R., & Namboodiri, A. M. (2009). Evidence for mitochondrial and cytoplasmic N-acetylaspartate synthesis in SH-SY5Y neuroblastoma cells. Neurochemistry International, 55(4), 219–225.PubMedCrossRefGoogle Scholar
  2. Axelrod, B. N. (2002). Are normative data from the 64-card version of the WCST comparable to the full WCST? The Clinical Neuropsychologist, 16(1), 7–11.PubMedCrossRefGoogle Scholar
  3. Bauer, D., Gupta, D., Harotunian, V., Meador-Woodruff, J. H., & McCullumsmith, R. E. (2008). Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophrenia Research, 104(1–3), 108–120.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bauer, D., Haroutunian, V., Meador-Woodruff, J. H., & McCullumsmith, R. E. (2010). Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophrenia Research, 117(1), 92–98.PubMedCrossRefGoogle Scholar
  5. Bowie, C. R., & Harvey, P. D. (2006). Administration and interpretation of the trail making test. Nature Protocols, 1(5), 2277–2281.PubMedCrossRefGoogle Scholar
  6. Brugger, S., Davis, J. M., Leucht, S., & Stone, J. M. (2011). Proton magnetic resonance spectroscopy and illness stage in schizophrenia--a systematic review and meta-analysis. Biological Psychiatry, 69(5), 495–503.PubMedCrossRefGoogle Scholar
  7. Carlson, H. L., MacMaster, F. P., Harris, A. D., & Kirton, A. (2017). Spectroscopic biomarkers of motor cortex developmental plasticity in hemiparetic children after perinatal stroke. Human Brain Mapping, 38(3), 1574–1587.PubMedCrossRefGoogle Scholar
  8. Castellano, G., Dias, C. S. B., Foerster, B., Li, L. M., & Covolan, R. J. M. (2012). NAA and NAAG variation in neuronal activation during visual stimulation. Brazilian Journal of Medical and Biological Research, 45(11), 1031–1036.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Coughlin, J. M., Tanaka, T., Marsman, A., Wang, H., Bonekamp, S., Kim, P. K., Higgs, C., Varvaris, M., Edden, R. A. E., Pomper, M., Schretlen, D., Barker, P. B., & Sawa, A. (2015). Decoupling of N-acetyl-aspartate and glutamate within the dorsolateral prefrontal cortex in schizophrenia. Current Molecular Medicine, 15(2), 176–183.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dauwan, M., Begemann, M. J. H., Heringa, S. M., & Sommer, I. E. (2016). Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: A systematic review and meta-analysis. Schizophrenia Bulletin, 42(3), 588–599.PubMedCrossRefGoogle Scholar
  11. Ende, G., Braus, D. F., Walter, S., Weber-Fahr, W., & Henn, F. A. (2003). Multiregional 1H-MRSI of the hippocampus, thalamus, and basal ganglia in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 253(1), 9–15.PubMedCrossRefGoogle Scholar
  12. Endicott, J., Spitzer, R. L., Fleiss, J. L., & Cohen, J. (1976). The global assessment scale. A procedure for measuring overall severity of psychiatric disturbance. Archives of General Psychiatry, 33(6), 766–771.PubMedCrossRefGoogle Scholar
  13. Erickson, K. I., Weinstein, A. M., Sutton, B. P., Prakash, R. S., Voss, M. W., Chaddock, L., Szabo, A. N., Mailey, E. L., White, S. M., Wojcicki, T. R., McAuley, E., & Kramer, A. F. (2012). Beyond vascularization: Aerobic fitness is associated with N-acetylaspartate and working memory. Brain and Behavior: A Cognitive Neuroscience Perspective, 2(1), 32–41.CrossRefGoogle Scholar
  14. Falkai, P., Malchow, B., Wetzestein, K., Nowastowski, V., Bernstein, H. G., Steiner, J., Schneider-Axmann, T., Kraus, T., Hasan, A., Bogerts, B., Schmitz, C., & Schmitt, A. (2016). Decreased oligodendrocyte and neuron number in anterior hippocampal areas and the entire Hippocampus in schizophrenia: A stereological postmortem study. Schizophrenia Bulletin, 42(Suppl 1), S4–S12.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Faul, F., et al. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.CrossRefGoogle Scholar
  16. Firth, J., et al. (2017). Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis. Schizophrenia Bulletin, 43(3), 546–556.PubMedGoogle Scholar
  17. Firth, J., Carney, R., Elliott, R., French, P., Parker, S., McIntyre, R., McPhee, J. S., & Yung, A. R. (2018). Exercise as an intervention for first-episode psychosis: A feasibility study. Early Intervention in Psychiatry, 12(3), 307–315.PubMedCrossRefGoogle Scholar
  18. Harrison, P. J. (2004). The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology, 174(1), 151–162.PubMedCrossRefGoogle Scholar
  19. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.PubMedCrossRefGoogle Scholar
  20. Keller-Varady, K., Hasan, A., Schneider-Axmann, T., Hillmer-Vogel, U., Adomßent, B., Wobrock, T., Schmitt, A., Niklas, A., Falkai, P., & Malchow, B. (2016). Endurance training in patients with schizophrenia and healthy controls: Differences and similarities. European Archives of Psychiatry and Clinical Neuroscience, 266(5), 461–473.PubMedCrossRefGoogle Scholar
  21. Keshavan, M. S., Dick, R. M., Diwadkar, V. A., Montrose, D. M., Prasad, K. M., & Stanley, J. A. (2009). Striatal metabolic alterations in non-psychotic adolescent offspring at risk for schizophrenia: A (1)H spectroscopy study. Schizophrenia Research, 115(1), 88–93.PubMedCrossRefGoogle Scholar
  22. Klar, A. A., et al. (2010). Interaction of hippocampal volume and N-acetylaspartate concentration deficits in schizophrenia: A combined MRI and 1H-MRS study. Neuroimage, 53(1), 51–57.PubMedCrossRefGoogle Scholar
  23. Kraguljac, N. V., Reid, M. A., White, D. M., den Hollander, J., & Lahti, A. C. (2012). Regional decoupling of N-acetyl-aspartate and glutamate in schizophrenia. Neuropsychopharmacology, 37(12), 2635–2642.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kraguljac, N. V., White, D. M., Reid, M. A., & Lahti, A. C. (2013). Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry, 70(12), 1294–1302.PubMedCrossRefGoogle Scholar
  25. Lutkenhoff, E. S., van Erp, T. G., Thomas, M. A., Therman, S., Manninen, M., Huttunen, M. O., Kaprio, J., Lönnqvist, J., O'Neill, J., & Cannon, T. D. (2010). Proton MRS in twin pairs discordant for schizophrenia. Molecular Psychiatry, 15(3), 308–318.PubMedCrossRefGoogle Scholar
  26. Maddock, R. J., Casazza, G. A., Buonocore, M. H., & Tanase, C. (2011). Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): A dynamic 1H-MRS study. Neuroimage, 57(4), 1324–1330.PubMedCrossRefGoogle Scholar
  27. Maier, M., et al. (2000). Schizophrenia, temporal lobe epilepsy and psychosis: An in vivo magnetic resonance spectroscopy and imaging study of the hippocampus/amygdala complex. Psychological Medicine, 30(3), 571–581.PubMedCrossRefGoogle Scholar
  28. Malchow, B., Keller, K., Hasan, A., Dörfler, S., Schneider-Axmann, T., Hillmer-Vogel, U., Honer, W. G., Schulze, T. G., Niklas, A., Wobrock, T., Schmitt, A., & Falkai, P. (2015). Effects of endurance training combined with cognitive remediation on everyday functioning, symptoms, and cognition in multiepisode schizophrenia patients. Schizophrenia Bulletin, 41(4), 847–858.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Malchow, B., Keeser, D., Keller, K., Hasan, A., Rauchmann, B. S., Kimura, H., Schneider-Axmann, T., Dechent, P., Gruber, O., Ertl-Wagner, B., Honer, W. G., Hillmer-Vogel, U., Schmitt, A., Wobrock, T., Niklas, A., & Falkai, P. (2016). Effects of endurance training on brain structures in chronic schizophrenia patients and healthy controls. Schizophrenia Research, 173(3), 182–191.PubMedCrossRefGoogle Scholar
  30. Maurus, I., Hasan, A., Röh, A., Takahashi, S., Rauchmann, B., Keeser, D., Malchow, B., Schmitt, A., & Falkai, P. (2019). Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 269(5), 499–515.PubMedCrossRefGoogle Scholar
  31. Merritt, K., Egerton, A., Kempton, M. J., Taylor, M. J., & McGuire, P. K. (2016). Nature of glutamate alterations in schizophrenia: A meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry, 73(7), 665–674.PubMedCrossRefGoogle Scholar
  32. Moffett, J. R., et al. (2007). N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Progress in Neurobiology, 81(2), 89–131.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Mountford, C. E., Stanwell, P., Lin, A., Ramadan, S., & Ross, B. (2010). Neurospectroscopy: The past, present and future. Chemical Reviews, 110(5), 3060–3086.PubMedCrossRefGoogle Scholar
  34. Muller, H., et al. (1997). Rey auditory-verbal learning test: Structure of a modified German version. Journal of Clinical Psychology, 53(7), 663–671.PubMedCrossRefGoogle Scholar
  35. Natt, O., Bezkorovaynyy, V., Michaelis, T., & Frahm, J. (2005). Use of phased array coils for a determination of absolute metabolite concentrations. Magnetic Resonance in Medicine, 53(1), 3–8.PubMedCrossRefGoogle Scholar
  36. Pajonk, F. G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., Kierer, A., Müller, S., Oest, M., Meyer, T., Backens, M., Schneider-Axmann, T., Thornton, A. E., Honer, W. G., & Falkai, P. (2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67(2), 133–143.PubMedCrossRefGoogle Scholar
  37. Papiol, S., Popovic, D., Keeser, D., Hasan, A., Schneider-Axmann, T., Degenhardt, F., Rossner, M. J., Bickeböller, H., Schmitt, A., Falkai, P., & Malchow, B. (2017). Polygenic risk has an impact on the structural plasticity of hippocampal subfields during aerobic exercise combined with cognitive remediation in multi-episode schizophrenia. Translational Psychiatry, 7(6), e1159.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Paslakis, G., Träber, F., Roberz, J., Block, W., & Jessen, F. (2014). N-acetyl-aspartate (NAA) as a correlate of pharmacological treatment in psychiatric disorders: A systematic review. European Neuropsychopharmacology, 24(10), 1659–1675.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Pouwels, P. J., & Frahm, J. (1998). Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magnetic Resonance in Medicine, 39(1), 53–60.PubMedCrossRefGoogle Scholar
  40. Provencher, S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672–679.PubMedCrossRefGoogle Scholar
  41. Quadrelli, S., Mountford, C., & Ramadan, S. (2016). Hitchhiker's guide to voxel segmentation for partial volume correction of in vivo magnetic resonance spectroscopy. Magn Reson Insights, 9, 1–8.PubMedPubMedCentralGoogle Scholar
  42. Schmitt, A., Reich-Erkelenz, D., Hasan, A., & Falkai, P. (2019). Aerobic exercise in mental disorders: From basic mechanisms to treatment recommendations. European Archives of Psychiatry and Clinical Neuroscience, 269(5), 483–484.PubMedCrossRefGoogle Scholar
  43. Schwerk, A., Alves, F. D. S., Pouwels, P. J. W., & van Amelsvoort, T. (2014). Metabolic alterations associated with schizophrenia: A critical evaluation of proton magnetic resonance spectroscopy studies. Journal of Neurochemistry, 128(1), 1–87.PubMedCrossRefGoogle Scholar
  44. Sheehan, D.V., et al., The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry, 1998. 59 Suppl 20: p. 22–33;quiz 34–57.Google Scholar
  45. Waddell, K. W., Zanjanipour, P., Pradhan, S., Xu, L., Welch, E. B., Joers, J. M., Martin, P. R., Avison, M. J., & Gore, J. C. (2011). Anterior cingulate and cerebellar GABA and Glu correlations measured by (1)H J-difference spectroscopy. Magnetic Resonance Imaging, 29(1), 19–24.PubMedCrossRefGoogle Scholar
  46. Wagner, G., Herbsleb, M., Cruz, F. . ., Schumann, A., Brünner, F., Schachtzabel, C., Gussew, A., Puta, C., Smesny, S., Gabriel, H. W., Reichenbach, J. R., & Bär, K. J. (2015). Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: A controlled trial. Journal of Cerebral Blood Flow and Metabolism, 35(10), 1570–1578.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wijtenburg, S. A., Yang, S., Fischer, B. A., & Rowland, L. M. (2015). In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: Application to schizophrenia. Neuroscience and Biobehavioral Reviews, 51, 276–295.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Wobrock, T., Scherk, H., & Falkai, P. (2005). Magnetic resonance spectroscopy in schizophrenia. Possibilities and limitations. Radiologe, 45(2), 124–130 132-6.PubMedCrossRefGoogle Scholar
  49. WHO (2010). International Statistical Classification of Diseases and Related Health Problems 10th Revision.
  50. Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics. The Journal of Clinical Psychiatry, 64(6), 663–667.PubMedCrossRefGoogle Scholar
  51. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.PubMedCrossRefGoogle Scholar
  52. Zhi, X., Cai, L., Guo, N., & Liu, X. (2019). Discussion on brain structure and function in schizophrenia by multimodal magnetic resonance imaging. Journal of Medical Systems, 43(4), 89.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Boris-Stephan Rauchmann
    • 1
    • 2
    Email author
  • Farhad Ghaseminejad
    • 3
  • Daniel Keeser
    • 1
  • Katriona Keller-Varady
    • 2
  • Thomas Schneider-Axmann
    • 2
  • Shun Takahashi
    • 2
    • 4
  • Temmuz Karali
    • 2
  • Gunther Helms
    • 5
  • Peter Dechent
    • 6
  • Isabel Maurus
    • 2
  • Alkomiet Hasan
    • 2
  • Thomas Wobrock
    • 7
  • Birgit Ertl-Wagner
    • 1
    • 8
  • Andrea Schmitt
    • 2
    • 9
  • Berend Malchow
    • 10
  • Peter Falkai
    • 2
  1. 1.Department of Radiology, University HospitalLMU MunichMunichGermany
  2. 2.Department of Psychiatry and Psychotherapy, University HospitalLMU MunichMunichGermany
  3. 3.Department of PsychiatryUniversity of British ColumbiaVancouverCanada
  4. 4.Department of NeuropsychiatryWakayama Medical UniversityWakayamaJapan
  5. 5.Medical Radiation Physics, Department of Clinical Sciences LundLund UniversityLundSweden
  6. 6.MR-Research in Neurology and Psychiatry, Institute of Cognitive NeurologyUniversity Medical Center GöttingenGöttingenGermany
  7. 7.Department of Psychiatry and PsychotherapyGeorg-August-University GöttingenGöttingenGermany
  8. 8.Department of Medical Imaging, The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  9. 9.Laboratory of Neuroscience (LIM27), Institute of PsychiatryUniversity of Sao PauloSão PauloBrazil
  10. 10.Department of Psychiatry and PsychotherapyUniversity Hospital JenaJenaGermany

Personalised recommendations