Advertisement

Dorsolateral prefrontal cortex hyperactivity during inhibitory control in children with ADHD in the antisaccade task

  • Juan Fernandez-RuizEmail author
  • Rebecca M. Hakvoort Schwerdtfeger
  • Nadia Alahyane
  • Donald C. Brien
  • Brian C. Coe
  • Douglas P. Munoz
Original Research
  • 34 Downloads

Abstract

Children with ADHD show significant deficits in response inhibition. A leading hypothesis suggests prefrontal hypoactivation as a possible cause, though, there is conflicting evidence. We tested the hypoactivation hypothesis by analyzing the response inhibition process within the oculomotor system. Twenty-two children diagnosed with ADHD and twenty control (CTRL) children performed the antisaccade task while undergoing an fMRI study with concurrent eye tracking. This task included a preparatory stage that cued a prosaccade (toward a stimuli) or an antisaccade (away from a stimuli) without an actual presentation of a peripheral target. This allowed testing inhibitory control without the confounding activation from an actual response. The ADHD group showed longer reaction times and more antisaccade direction errors. While both groups showed activations in saccade network areas, the ADHD showed significant hyperactivation in the dorsolateral prefrontal cortex during the preparatory stage. No other areas in the saccade network had significant activation differences between groups. Further ADHD group analysis OFF and ON stimulant medication did not show drug-related activation differences. However, they showed a significant correlation between the difference in OFF/ON preparatory activation in the precuneus, and a decrease in the number of antisaccade errors. These results do not support the hypoactivity hypothesis as an inhibitory control deficit general explanation, but instead suggest less efficiency during the inhibitory period of the antisaccade task in children. Our findings contrast with previous results in ADHD adults showing decreased preparatory antisaccade activity, suggesting a significant age-dependent maturation effect associated to the inhibitory response in the oculomotor system.

Keywords

ADHD Antisaccades Precuneus Dorsolateral prefrontal cortex Methylphenidate Childhood 

Notes

Acknowledgments

This work was supported by Canadian Institutes of Health Research Operating Grant FDN 148418 to D. P. M., who was also supported by the Canada Research Chair Program 950-230425.

Funding information

This work was supported by Canadian Institutes of Health Research Operating Grant FDN 148418 to D. P. M., who was also supported by the Canada Research Chair Program 950–230,425.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

All experiments were approved by the Health Sciences and Affiliated Teaching Hospitals Research and Ethics Board of Queen’s University and in accordance with the principles of the Canadian Tri-Council Policy Statement (TCPS-22014) on Ethical Conduct for Research Involving Humans, and the Declaration of Helsinki (World Medical Association., 2001).

Informed consent

All participants and their parents gave written and informed consent.

References

  1. Alahyane, N., Brien, D. C., Coe, B. C., Stroman, P. W., & Munoz, D. P. (2014). Developmental improvements in voluntary control of behavior: Effect of preparation in the fronto-parietal network? [Research Support, non-U.S. Gov't]. Neuroimage, 98, 103–117.  https://doi.org/10.1016/j.neuroimage.2014.03.008.Google Scholar
  2. Anderson, E. J., Jones, D. K., O'Gorman, R. L., Leemans, A., Catani, M., & Husain, M. (2012). Cortical network for gaze control in humans revealed using multimodal MRI. Cerebral Cortex, 22(4), 765–775.  https://doi.org/10.1093/cercor/bhr110.Google Scholar
  3. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. [Research Support, U.S. Gov't, P.H.S. review]. Psychological Bulletin, 121(1), 65–94.Google Scholar
  4. Bedard, A. C., Newcorn, J. H., Clerkin, S. M., Krone, B., Fan, J., Halperin, J. M., et al. (2014). Reduced prefrontal efficiency for visuospatial working memory in attention-deficit/hyperactivity disorder. [Research Support, non-U.S. Gov't]. Journal of the American Academy of Child and Adolescent Psychiatry, 53(9), 1020–1030 e1026.  https://doi.org/10.1016/j.jaac.2014.05.011.Google Scholar
  5. Biederman, J., Mick, E., & Faraone, S. V. (2000). Age-dependent decline of symptoms of attention deficit hyperactivity disorder: Impact of remission definition and symptom type. [Research Support, U.S. Gov't, P.H.S.]. The American Journal of Psychiatry, 157(5), 816–818.  https://doi.org/10.1176/appi.ajp.157.5.816.Google Scholar
  6. Brown, M. R., Goltz, H. C., Vilis, T., Ford, K. A., & Everling, S. (2006). Inhibition and generation of saccades: Rapid event-related fMRI of prosaccades, antisaccades, and nogo trials. [Research Support, non-U.S. Gov't]. Neuroimage, 33(2), 644–659.  https://doi.org/10.1016/j.neuroimage.2006.07.002.Google Scholar
  7. Brown, M. R., Vilis, T., & Everling, S. (2007). Frontoparietal activation with preparation for antisaccades. [Research Support, non-U.S. Gov't]. Journal of Neurophysiology, 98(3), 1751–1762.  https://doi.org/10.1152/jn.00460.2007.Google Scholar
  8. Bucci, M. P., Stordeur, C., Septier, M., Acquaviva, E., Peyre, H., & Delorme, R. (2017). Oculomotor abnormalities in children with attention-deficit/hyperactivity disorder are improved by methylphenidate. Journal of Child and Adolescent Psychopharmacology, 27(3), 274–280.  https://doi.org/10.1089/cap.2016.0162.Google Scholar
  9. Cameron, I. G., Pari, G., Alahyane, N., Brien, D. C., Coe, B. C., Stroman, P. W., et al. (2012). Impaired executive function signals in motor brain regions in Parkinson's disease. [Research Support, non-U.S. Gov't]. Neuroimage, 60(2), 1156–1170.  https://doi.org/10.1016/j.neuroimage.2012.01.057.Google Scholar
  10. Cameron, I. G., Riddle, J. M., & D'Esposito, M. (2015). Dissociable roles of dorsolateral prefrontal cortex and frontal eye fields during saccadic eye movements. Frontiers in Human Neuroscience, 9, 613.  https://doi.org/10.3389/fnhum.2015.00613.Google Scholar
  11. Castellanos, F. X., Margulies, D. S., Kelly, C., Uddin, L. Q., Ghaffari, M., Kirsch, A., et al. (2008). Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder. [Research Support, N.I.H., extramural Research Support, non-U.S. Gov't]. Biological Psychiatry, 63(3), 332–337.  https://doi.org/10.1016/j.biopsych.2007.06.025.Google Scholar
  12. Connolly, J. D., Goodale, M. A., Menon, R. S., & Munoz, D. P. (2002). Human fMRI evidence for the neural correlates of preparatory set. [Research Support, non-U.S. Gov't]. Nature Neuroscience, 5(12), 1345–1352.  https://doi.org/10.1038/nn969.Google Scholar
  13. Connolly, J. D., Goodale, M. A., Goltz, H. C., & Munoz, D. P. (2005). fMRI activation in the human frontal eye field is correlated with saccadic reaction time. Journal of Neurophysiology, 94(1), 605–611.  https://doi.org/10.1152/jn.00830.2004.Google Scholar
  14. Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., et al. (2012). Toward systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. [meta-analysis Research Support, N.I.H., extramural Research Support, non-U.S. Gov't]. The American Journal of Psychiatry, 169(10), 1038–1055.  https://doi.org/10.1176/appi.ajp.2012.11101521.Google Scholar
  15. Criaud, M., & Boulinguez, P. (2013). Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. [meta-analysis Research Support, non-U.S. Gov't review]. Neuroscience and Biobehavioral Reviews, 37(1), 11–23.  https://doi.org/10.1016/j.neubiorev.2012.11.003.Google Scholar
  16. Curtis, C. E., & D'Esposito, M. (2003). Success and failure suppressing reflexive behavior. [Research Support, non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Cognitive Neuroscience, 15(3), 409–418.  https://doi.org/10.1162/089892903321593126.Google Scholar
  17. Dale, A. M. (1999). Optimal experimental design for event-related fMRI. [Research Support, non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Human Brain Mapping, 8(2–3), 109–114.Google Scholar
  18. DeSouza, J. F., Menon, R. S., & Everling, S. (2003). Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI. [Research Support, non-U.S. Gov't]. Journal of Neurophysiology, 89(2), 1016–1023.  https://doi.org/10.1152/jn.00562.2002.Google Scholar
  19. Dickstein, S. G., Bannon, K., Castellanos, F. X., & Milham, M. P. (2006). The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. [meta-analysis Research Support, N.I.H., extramural]. Journal of Child Psychology and Psychiatry, 47(10), 1051–1062.  https://doi.org/10.1111/j.1469-7610.2006.01671.x.Google Scholar
  20. Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y. H., et al. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53(10), 871–878.  https://doi.org/10.1016/S0006-3223(02)01904-2.Google Scholar
  21. Feifel, D., Farber, R. H., Clementz, B. A., Perry, W., & Anllo-Vento, L. (2004). Inhibitory deficits in ocular motor behavior in adults with attention-deficit/hyperactivity disorder. [comparative study Research Support, U.S. Gov't, P.H.S.]. Biological Psychiatry, 56(5), 333–339.  https://doi.org/10.1016/j.biopsych.2004.06.019.Google Scholar
  22. Fernandez-Ruiz, J., Peltsch, A., Alahyane, N., Brien, D. C., Coe, B. C., Garcia, A., et al. (2017). Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task. Neuroimage, 165, 92–101.  https://doi.org/10.1016/j.neuroimage.2017.10.001.Google Scholar
  23. Fischer, B., & Weber, H. (1997). Effects of stimulus conditions on the performance of antisaccades in man. [clinical trial Research Support, non-U.S. Gov't]. Experimental Brain Research, 116(2), 191–200.Google Scholar
  24. Ford, K. A., Goltz, H. C., Brown, M. R., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related FMRI. [comparative study Research Support, non-U.S. Gov't]. Journal of Neurophysiology, 94(1), 429–440.  https://doi.org/10.1152/jn.00471.2004.Google Scholar
  25. Goto, Y., Hatakeyama, K., Kitama, T., Sato, Y., Kanemura, H., Aoyagi, K., et al. (2010). Saccade eye movements as a quantitative measure of frontostriatal network in children with ADHD. Brain Dev, 32(5), 347–355.  https://doi.org/10.1016/j.braindev.2009.04.017.Google Scholar
  26. Gottlieb, J., & Goldberg, M. E. (1999). Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nature Neuroscience, 2(10), 906–912.  https://doi.org/10.1038/13209.Google Scholar
  27. Guitton, D., Buchtel, H. A., & Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. [Research Support, non-U.S. Gov't]. Experimental Brain Research, 58(3), 455–472.Google Scholar
  28. Hakvoort Schwerdtfeger, R. M., Alahyane, N., Brien, D. C., Coe, B. C., Stroman, P. W., & Munoz, D. P. (2012). Preparatory neural networks are impaired in adults with attention-deficit/hyperactivity disorder during the antisaccade task. Neuroimage Clinics, 2, 63–78.  https://doi.org/10.1016/j.nicl.2012.10.006.Google Scholar
  29. Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18(10), 1279–1296.Google Scholar
  30. Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. [meta-analysis Research Support, non-U.S. Gov't]. JAMA Psychiatry, 70(2), 185–198.  https://doi.org/10.1001/jamapsychiatry.2013.277.Google Scholar
  31. Jamadar, S. D., Fielding, J., & Egan, G. F. (2013). Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades. Frontiers in Psychology, 4, 749.  https://doi.org/10.3389/fpsyg.2013.00749.Google Scholar
  32. Kessler, R. C., Adler, L., Barkley, R., Biederman, J., Conners, C. K., Demler, O., et al. (2006). The prevalence and correlates of adult ADHD in the United States: Results from the National Comorbidity Survey Replication. [comparative study Research Support, N.I.H., extramural Research Support, non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The American Journal of Psychiatry, 163(4), 716–723.  https://doi.org/10.1176/ajp.2006.163.4.716.Google Scholar
  33. Klein, C. H., Raschke, A., & Brandenbusch, A. (2003). Development of pro- and antisaccades in children with attention-deficit hyperactivity disorder (ADHD) and healthy controls. [clinical trial Research Support, non-U.S. Gov't]. Psychophysiology, 40(1), 17–28.Google Scholar
  34. Klein, R. G., Mannuzza, S., Olazagasti, M. A., Roizen, E., Hutchison, J. A., Lashua, E. C., et al. (2012). Clinical and functional outcome of childhood attention-deficit/hyperactivity disorder 33 years later. Archives of General Psychiatry, 69(12), 1295–1303.  https://doi.org/10.1001/archgenpsychiatry.2012.271.Google Scholar
  35. Ko, C. H., Yen, J. Y., Yen, C. F., Chen, C. S., Lin, W. C., Wang, P. W., et al. (2013). Brain activation deficit in increased-load working memory tasks among adults with ADHD using fMRI. [Research Support, non-U.S. Gov't]. European Archives of Psychiatry and Clinical Neuroscience, 263(7), 561–573.  https://doi.org/10.1007/s00406-013-0407-2.Google Scholar
  36. Loe, I. M., Feldman, H. M., Yasui, E., & Luna, B. (2009). Oculomotor performance identifies underlying cognitive deficits in attention-deficit/hyperactivity disorder. [Research Support, N.I.H., extramural]. Journal of the American Academy of Child and Adolescent Psychiatry, 48(4), 431–440.  https://doi.org/10.1097/CHI.0b013e31819996da.Google Scholar
  37. Luna, B., Thulborn, K. R., Strojwas, M. H., McCurtain, B. J., Berman, R. A., Genovese, C. R., et al. (1998). Dorsal cortical regions subserving visually guided saccades in humans: An fMRI study. [clinical trial Research Support, U.S. Gov't, P.H.S.]. Cerebral Cortex, 8(1), 40–47.Google Scholar
  38. Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. [Research Support, U.S. Gov't, P.H.S.]. Neuroimage, 13(5), 786–793.  https://doi.org/10.1006/nimg.2000.0743.Google Scholar
  39. Matsuda, T., Matsuura, M., Ohkubo, T., Ohkubo, H., Matsushima, E., Inoue, K., et al. (2004). Functional MRI mapping of brain activation during visually guided saccades and antisaccades: Cortical and subcortical networks. Psychiatry Research, 131(2), 147–155.  https://doi.org/10.1016/j.pscychresns.2003.12.007.Google Scholar
  40. Morein-Zamir, S., Dodds, C., van Hartevelt, T. J., Schwarzkopf, W., Sahakian, B., Muller, U., et al. (2014). Hypoactivation in right inferior frontal cortex is specifically associated with motor response inhibition in adult ADHD. Human Brain Mapping, 35(10), 5141–5152.  https://doi.org/10.1002/hbm.22539.Google Scholar
  41. Mostofsky, S. H., Lasker, A. G., Cutting, L. E., Denckla, M. B., & Zee, D. S. (2001). Oculomotor abnormalities in attention deficit hyperactivity disorder: A preliminary study. [Research Support, U.S. Gov't, P.H.S.]. Neurology, 57(3), 423–430.Google Scholar
  42. Munoz, D. P., & Corneil, B. D. (1995). Evidence for interactions between target selection and visual fixation for saccade generation in humans. Experimental Brain Research, 103(1), 168–173.Google Scholar
  43. Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. [Research Support, non-U.S. Gov't review]. Nature Reviews. Neuroscience, 5(3), 218–228.  https://doi.org/10.1038/nrn1345.Google Scholar
  44. Munoz, D. P., Broughton, J. R., Goldring, J. E., & Armstrong, I. T. (1998). Age-related performance of human subjects on saccadic eye movement tasks. [Research Support, non-U.S. Gov't]. Experimental Brain Research, 121(4), 391–400.Google Scholar
  45. Munoz, D. P., Armstrong, I. T., Hampton, K. A., & Moore, K. D. (2003). Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. [Research Support, non-U.S. Gov't]. Journal of Neurophysiology, 90(1), 503–514.  https://doi.org/10.1152/jn.00192.2003.Google Scholar
  46. Nyffeler, T., Muri, R. M., Bucher-Ottiger, Y., Pierrot-Deseilligny, C., Gaymard, B., & Rivaud-Pechoux, S. (2007a). Inhibitory control of the human dorsolateral prefrontal cortex during the anti-saccade paradigm--a transcranial magnetic stimulation study. [Research Support, non-U.S. Gov't]. The European Journal of Neuroscience, 26(5), 1381–1385.  https://doi.org/10.1111/j.1460-9568.2007.05758.x.Google Scholar
  47. Nyffeler, T., Muri, R. M., Bucher-Ottiger, Y., Pierrot-Deseilligny, C., Gaymard, B., & Rivaud-Pechoux, S. (2007b). Inhibitory control of the human dorsolateral prefrontal cortex during the anti-saccade paradigm - a transcranial magnetic stimulation study. European Journal of Neuroscience, 26(5), 1381–1385.  https://doi.org/10.1111/j.1460-9568.2007.05758.x.Google Scholar
  48. O'Driscoll, G. A., Depatie, L., Holahan, A. L., Savion-Lemieux, T., Barr, R. G., Jolicoeur, C., et al. (2005). Executive functions and methylphenidate response in subtypes of attention-deficit/hyperactivity disorder. [clinical trial comparative study Research Support, non-U.S. Gov't]. Biological Psychiatry, 57(11), 1452–1460.  https://doi.org/10.1016/j.biopsych.2005.02.029.Google Scholar
  49. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868–9872.Google Scholar
  50. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., & Agid, Y. (1991). Cortical control of reflexive visually-guided saccades. Brain, 114(Pt 3), 1473–1485.Google Scholar
  51. Pliszka, S. R., Glahn, D. C., Semrud-Clikeman, M., Franklin, C., Perez, R., 3rd, Xiong, J., et al. (2006). Neuroimaging of inhibitory control areas in children with attention deficit hyperactivity disorder who were treatment naive or in long-term treatment. [comparative study Research Support, N.I.H., extramural]. The American Journal of Psychiatry, 163(6), 1052–1060.  https://doi.org/10.1176/ajp.2006.163.6.1052.Google Scholar
  52. Ploner, C. J., Gaymard, B. M., Rivaud-Pechoux, S., & Pierrot-Deseilligny, C. (2005). The prefrontal substrate of reflexive saccade inhibition in humans. [clinical trial Research Support, non-U.S. Gov't]. Biological Psychiatry, 57(10), 1159–1165.  https://doi.org/10.1016/j.biopsych.2005.02.017.Google Scholar
  53. Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J., & Rohde, L. A. (2007). The worldwide prevalence of ADHD: A systematic review and metaregression analysis. [meta-analysis Research Support, non-U.S. Gov't review]. The American Journal of Psychiatry, 164(6), 942–948.  https://doi.org/10.1176/ajp.2007.164.6.942.Google Scholar
  54. Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafo, M. R., et al. (2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. [review]. Nature Reviews. Neuroscience, 18(2), 115–126.  https://doi.org/10.1038/nrn.2016.167.Google Scholar
  55. Raemaekers, M., Vink, M., van den Heuvel, M. P., Kahn, R. S., & Ramsey, N. F. (2006). Effects of aging on BOLD fMRI during prosaccades and antisaccades. [comparative study]. Journal of Cognitive Neuroscience, 18(4), 594–603.  https://doi.org/10.1162/jocn.2006.18.4.594.Google Scholar
  56. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C., Simmons, A., et al. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. [Research Support, non-U.S. Gov't]. The American Journal of Psychiatry, 156(6), 891–896.  https://doi.org/10.1176/ajp.156.6.891.Google Scholar
  57. Rubia, K., Smith, A. B., Brammer, M. J., Toone, B., & Taylor, E. (2005). Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. [comparative study Research Support, non-U.S. Gov't]. The American Journal of Psychiatry, 162(6), 1067–1075.  https://doi.org/10.1176/appi.ajp.162.6.1067.Google Scholar
  58. Rubia, K., Halari, R., Cubillo, A., Mohammad, A. M., Brammer, M., & Taylor, E. (2009). Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. [randomized controlled trial Research Support, non-U.S. Gov't]. Neuropharmacology, 57(7–8), 640–652.  https://doi.org/10.1016/j.neuropharm.2009.08.013.Google Scholar
  59. Rubia, K., Halari, R., Mohammad, A. M., Taylor, E., & Brammer, M. (2011). Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. [randomized controlled trial Research Support, non-U.S. Gov't]. Biological Psychiatry, 70(3), 255–262.  https://doi.org/10.1016/j.biopsych.2011.04.018.Google Scholar
  60. Rubia, K., Alegria, A. A., Cubillo, A. I., Smith, A. B., Brammer, M. J., & Radua, J. (2014). Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. [Research Support, non-U.S. Gov't review]. Biological Psychiatry, 76(8), 616–628.  https://doi.org/10.1016/j.biopsych.2013.10.016.Google Scholar
  61. Saslow, M. G. (1967). Effects of components of displacement-step stimuli upon latency for saccadic eye movement. Journal of the Optical Society of America, 57(8), 1024–1029.Google Scholar
  62. Schachar, R., Mota, V. L., Logan, G. D., Tannock, R., & Klim, P. (2000). Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. [Research Support, non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Abnormal Child Psychology, 28(3), 227–235.Google Scholar
  63. Schrantee, A., Tamminga, H. G., Bouziane, C., Bottelier, M. A., Bron, E. E., Mutsaerts, H. J., et al. (2016). Age-dependent effects of methylphenidate on the human dopaminergic system in young vs adult patients with attention-deficit/hyperactivity disorder: A randomized clinical trial. [multicenter study randomized controlled trial]. JAMA Psychiatry, 73(9), 955–962.  https://doi.org/10.1001/jamapsychiatry.2016.1572.Google Scholar
  64. Schulz, K. P., Fan, J., Tang, C. Y., Newcorn, J. H., Buchsbaum, M. S., Cheung, A. M., et al. (2004). Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: An event-related FMRI study. [comparative study Research Support, non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The American Journal of Psychiatry, 161(9), 1650–1657.  https://doi.org/10.1176/appi.ajp.161.9.1650.Google Scholar
  65. Schwarz, N. F., Krafft, C. E., Chi, L., Weinberger, A. L., Schaeffer, D. J., Pierce, J. E., et al. (2015). Antisaccade-related brain activation in children with attention-deficit/hyperactivity disorder--a pilot study. [Research Support, N.I.H., extramural Research Support, non-U.S. Gov't]. Psychiatry Research, 234(2), 272–279.  https://doi.org/10.1016/j.pscychresns.2015.10.003.Google Scholar
  66. Sheridan, M. A., Hinshaw, S., & D'Esposito, M. (2007). Efficiency of the prefrontal cortex during working memory in attention-deficit/hyperactivity disorder. [Research Support, N.I.H., extramural]. Journal of the American Academy of Child and Adolescent Psychiatry, 46(10), 1357–1366.  https://doi.org/10.1097/chi.0b013e31812eecf7.Google Scholar
  67. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366.  https://doi.org/10.1177/0956797611417632.Google Scholar
  68. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain : 3-dimensional proportional system : An approach to cerebral imaging. In Stuttgart. New York: Georg Thieme.Google Scholar
  69. Tamm, L., Menon, V., Ringel, J., & Reiss, A. L. (2004). Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. [Research Support, non-U.S. Gov't. Research Support, U.S. Gov't, P.H.S.]. Journal of the American Academy of Child and Adolescent Psychiatry, 43(11), 1430–1440.  https://doi.org/10.1097/01.chi.0000140452.51205.8d.Google Scholar
  70. Wender, P. H., Wolf, L. E., & Wasserstein, J. (2001). Adults with ADHD. An overview. [review]. Annals of the New York Academy of Sciences, 931, 1–16.Google Scholar
  71. Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. [meta-analysis Research Support, N.I.H., extramural Research Support, U.S. Gov't, P.H.S. review]. Biological Psychiatry, 57(11), 1336–1346.  https://doi.org/10.1016/j.biopsych.2005.02.006.Google Scholar
  72. Witiuk, K., Fernandez-Ruiz, J., McKee, R., Alahyane, N., Coe, B. C., Melanson, M., et al. (2014). Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. [randomized controlled trial. Research Support, Non-U.S. Gov't]. Journal of Neuroscience, 34(43), 14260–14271.  https://doi.org/10.1523/JNEUROSCI.1111-14.2014.Google Scholar
  73. Wodka, E. L., Mahone, E. M., Blankner, J. G., Larson, J. C. G., Fotedar, S., Denckla, M. B., et al. (2007). Evidence that response inhibition is a primary deficit in ADHD. Journal of Clinical and Experimental Neuropsychology, 29(4), 345–356.  https://doi.org/10.1080/13803390600678046.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autonoma de MexicoCiudad de MéxicoMexico
  2. 2.Centre for Neuroscience StudiesQueen’s UniversityKingstonCanada
  3. 3.Laboratoire Vision Action CognitionUniversite Paris DescartesParisFrance
  4. 4.Department of MedicineQueen’s UniversityKingstonCanada
  5. 5.Biomedical and Molecular SciencesQueen’s UniversityKingstonCanada
  6. 6.PsychologyQueen’s UniversityKingstonCanada

Personalised recommendations