Advertisement

Association between personality and tau-PET binding in cognitively normal older adults

  • Stephanie A. Schultz
  • Brian A. Gordon
  • Shruti Mishra
  • Yi Su
  • John C. Morris
  • Beau M. Ances
  • Janet M. Duchek
  • David A. Balota
  • Tammie L. S. BenzingerEmail author
Original Research

Abstract

Personality traits such as Neuroticism and Conscientiousness are associated with Alzheimer disease (AD) pathophysiology in cognitively normal (CN) and impaired individuals, and may represent potential risk or resilience factors, respectively. This study examined the cross-sectional relationship between personality traits and regional tau deposition using positron emission tomography (PET) in cognitively normal older adults. A cohort of CN (Clinical Dementia Rating (CDR) 0, n = 128) older adults completed the NEO Five-Factor Inventory to assess traits of Neuroticism, Extroversion, Openness, Agreeableness, and Conscientiousness and underwent tau-PET and β-amyloid (Aβ)-PET imaging. We utilized linear regression models, adjusting for age, sex, geriatric depression score, and Aβ to evaluate the association between each of the personality traits and regional tau-PET accumulation. Elevated Neuroticism scores were associated with higher tau-PET accumulation in the amygdala (p = .002), entorhinal cortex (p = .012), and inferior temporal cortex (p = .016), as well as with a composite tau-PET measure (p = .002). In contrast, Extroversion, Openness, Agreeableness, and Conscientiousness were not associated with tau deposition in any of these regions (p’s > 0.160). Our results indicate that increased Neuroticism is associated with higher tau pathophysiology in regions known to be vulnerable to AD pathophysiology in CN participants. High Neuroticism scores may therefore serve as a potential risk factor for tau accumulation. Alternatively, personality can change with the onset of AD, thus increased tau levels may affect Neuroticism scores. While future longitudinal studies are needed to determine directionality, our findings suggest early associations between Neuroticism and tau accumulation in CN adults.

Keywords

Personality Neuroticism Alzheimer disease Tau Neurodegeneration 

Notes

Acknowledgements

The authors acknowledge the financial support of Fred Simmons and Olga Mohan, the Charles F. and Joanne Knight Alzheimer’s Research Initiative, the Hope Center for Neurological Disorders, the Mallinckrodt Institute of Radiology, the American Society for Neuroradiology, and the Barnes-Jewish Hospital Foundation (BJHF), the Paula and Rodger Riney Fund, the BJHF Willman Scholar Fund, and the Daniel J Brennan MD Fund. This research was additionally funded by BrightFocus Foundation grants A2017272S and A2017330S; Alzheimer’s Association Research Grant AARG -17-532945; Arizona Alzheimer’s Research Consortium; National Science Foundation grant DGE-1745038; and National Institutes of Health grants P50AG005681, P01AG026276, P01AG003991, R01AG055444, R01AG031581, UL1TR000448, R01EB009352, 1P30NS098577, and K01AG053474-01A1. Avid Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly) provided doses of 18Fflorbetapir, partial funding for 18F-florbetapir scanning, precursor for 18F-flortaucipir, and technology transfer for manufacturing of 18F-flortaucipir. The authors thank their participants, without whom this study would not have been possible.

Funding

The authors acknowledge the financial support of Fred Simmons and Olga Mohan, the Charles F. and Joanne Knight Alzheimer’s Research Initiative, the Hope Center for Neurological Disorders, the Mallinckrodt Institute of Radiology, the American Society for Neuroradiology, and the Barnes-Jewish Hospital Foundation (BJHF), the BJHF Paula and Rodger O. Riney Fund, the BJHF Willman Scholar Fund, and the Daniel J Brennan Fund. This research was additionally funded by BrightFocus Foundation grants A2017272S and A2017330S; Alzheimer’s Association Research Grant AARG -17-532945; Arizona Alzheimer’s Research Consortium; National Science Foundation grant DGE-1745038; and National Institutes of Health grants P50AG005681, P01AG026276, P01AG003991, R01AG055444, R01AG031581, UL1TR000448, R01EB009352, 1P30NS098577, and K01AG053474-01A1. Avid Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly) provided doses of 18F-florbetapir, partial funding for 18F-florbetapir scanning, precursor for 18F-flortaucipir, and technology transfer for manufacturing of 18F-flortaucipir.

Compliance with ethical standards

Conflict of interest

John C. Morris, Tammie L.S. Benzinger, and Brian A. Gordon report participation in clinical trials sponsored by Eli Lilly, Roche, and Biogen. Avid Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly provided doses of 18F-florbetapir, partial funding for 18F-florbetapir scanning, precursor for 18F-flortaucipir and technology transfer for manufacturing of 18F-flortaucipir). None of the authors, nor their family members, own stock or have equity interest (outside of mutual funds or other externally directed accounts) in any pharmaceutical or biotechnology company.

Supplementary material

11682_2019_163_Fig3_ESM.png (2 mb)
Supplementary Fig. 1

Neuroticism and Openness decrease over time. Spaghetti plot showing longitudinal Neuroticism (a), Conscientiousness (b), Openness (c), Extroversion (d), and Agreeableness (e) scores over time. (PNG 2028 kb)

11682_2019_163_MOESM1_ESM.tiff (2.2 mb)
High Resolution Image (TIFF 2229 kb)

References

  1. Aschenbrenner, A. J., Gordon, B. A., Benzinger, T. L. S., Morris, J. C., & Hassenstab, J. J. (2018). Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology, 91(9), e859–e866.  https://doi.org/10.1212/WNL.0000000000006075.CrossRefGoogle Scholar
  2. Balsis, S., Carpenter, B. D., & Storandt, M. (2005). Personality change precedes clinical diagnosis of dementia of the Alzheimer type. The Journals of Gerontology: Series B, 60(2), P98–P101.  https://doi.org/10.1093/geronb/60.2.P98.CrossRefGoogle Scholar
  3. Brier, M. R., Gordon, B., Friedrichsen, K., McCarthy, J., Stern, A., Christensen, J., … Ances, B. M. (2016a). Tau and Abeta imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med, 8(338), 338ra366.  https://doi.org/10.1126/scitranslmed.aaf2362.
  4. Brummett, B. H., Babyak, M. A., Williams, R. B., Barefoot, J. C., Costa, P. T., & Siegler, I. C. (2006). NEO personality domains and gender predict levels and trends in body mass index over 14 years during midlife. Journal of Research in Personality, 40(3), 222–236.  https://doi.org/10.1016/j.jrp.2004.12.002.CrossRefGoogle Scholar
  5. Chioqueta, A. P., & Stiles, T. C. (2005). Personality traits and the development of depression, hopelessness, and suicide ideation. Personality and Individual Differences, 38(6), 1283–1291.  https://doi.org/10.1016/j.paid.2004.08.010.CrossRefGoogle Scholar
  6. Costa, P. T., & McCrae, R. R. (1992a). Four ways five factors are basic. Personality and Individual Differences, 13(6), 653–665.  https://doi.org/10.1016/0191-8869(92)90236-I.CrossRefGoogle Scholar
  7. Costa, P. T., & McCrae, R. R. (1992b). NEO PI-R professional manual. Odessa: Psychological Assessment Resources.Google Scholar
  8. Costa, P. J., & RR, M. (1988). Personality in adulthood: A six-year longitudinal study of self-reports and spouse ratings on the NEO personality inventory. Journal of Personality and Social Psychology, 54(5), 853–863.CrossRefGoogle Scholar
  9. Dawson, D. V., Welsh-Bohmer, K. A., & Siegler, I. C. (2000). Premorbid personality predicts level of rated personality change in patients with Alzheimer disease. Alzheimer Disease and Associated Disorders, 14(1), 11–19.CrossRefGoogle Scholar
  10. Donnellan, M. B., & Lucas, R. E. (2008). Age differences in the big five across the life span: Evidence from two national samples. Psychology and Aging, 23(3), 558–566.  https://doi.org/10.1037/a0012897.CrossRefGoogle Scholar
  11. Duchek, J. M., Balota, D. A., Storandt, M., & Larsen, R. (2007). The power of personality in discriminating between healthy aging and early-stage Alzheimer's disease. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 62(6), P353–P361.CrossRefGoogle Scholar
  12. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., … Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.Google Scholar
  13. Friedman, H. S., Tucker, J. S., Tomlinson-Keasey, C., Schwartz, J. E., Wingard, D. L., & Criqui, M. H. (1993). Does childhood personality predict longevity? Journal of Personality and Social Psychology, 65(1), 176–185.  https://doi.org/10.1037/0022-3514.65.1.176.CrossRefGoogle Scholar
  14. Gordon, B. A., Friedrichsen, K., Brier, M., Blazey, T., Su, Y., Christensen, J., Aldea, P., McConathy, J., Holtzman, D. M., Cairns, N. J., Morris, J. C., Fagan, A. M., Ances, B. M., & Benzinger, T. L. (2016). The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. Brain, 139(Pt 8), 2249–2260.  https://doi.org/10.1093/brain/aww139.CrossRefGoogle Scholar
  15. Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., … Myers, B. (2016). Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comprehensive Physiology, 6(2), 603–621.  https://doi.org/10.1002/cphy.c150015.
  16. Jackson, J., Balota, D. A., & Head, D. (2011). Exploring the relationship between personality and regional brain volume in healthy aging. Neurobiology of Aging, 32(12), 2162–2171.  https://doi.org/10.1016/j.neurobiolaging.2009.12.009.CrossRefGoogle Scholar
  17. John, O. P., & Srivastava, S. (1999). The big five trait taxonomy: History, measurement, and theoretical perspectives. In Handbook of personality: Theory and research (2nd ed., pp. 102–138). New York: Guilford Press.Google Scholar
  18. Johnson, K. A., Schultz, A., Betensky, R. A., Becker, J. A., Sepulcre, J., Rentz, D., Mormino, E., Chhatwal, J., Amariglio, R., Papp, K., Marshall, G., Albers, M., Mauro, S., Pepin, L., Alverio, J., Judge, K., Philiossaint, M., Shoup, T., Yokell, D., Dickerson, B., Gomez-Isla, T., Hyman, B., Vasdev, N., & Sperling, R. (2016). Tau positron emission tomographic imaging in aging and early Alzheimer disease. Annals of Neurology, 79(1), 110–119.  https://doi.org/10.1002/ana.24546.CrossRefGoogle Scholar
  19. Mishra, S., Gordon, B. A., Su, Y., Christensen, J., Friedrichsen, K., Jackson, K., Hornbeck, R., Balota, D. A., Cairns, N. J., Morris, J. C., Ances, B. M., & Benzinger, T. L. S. (2017). AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure. Neuroimage., 161, 171–178.  https://doi.org/10.1016/j.neuroimage.2017.07.050.CrossRefGoogle Scholar
  20. Morris, J. C. (1997). Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(Suppl 1), 173–176 discussion 177-178.CrossRefGoogle Scholar
  21. Petry, S., Cummings, J. L., Hill, M., & Shapira, J. (1988). Personality alterations in dementia of the alzheimer type. Archives of Neurology, 45(11), 1187–1190.  https://doi.org/10.1001/archneur.1988.00520350025009.CrossRefGoogle Scholar
  22. Poeggel, G., Helmeke, C., Abraham, A., Schwabe, T., Friedrich, P., & Braun, K. (2003). Juvenile emotional experience alters synaptic composition in the rodent cortex, hippocampus, and lateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 16137–16142.  https://doi.org/10.1073/pnas.2434663100.CrossRefGoogle Scholar
  23. Radley, J. J., & Morrison, J. H. (2005). Repeated stress and structural plasticity in the brain. Ageing Research Reviews, 4(2), 271–287.  https://doi.org/10.1016/j.arr.2005.03.004.CrossRefGoogle Scholar
  24. Rhodes, R. E., & Smith, N. E. (2006). Personality correlates of physical activity: A review and meta-analysis. British Journal of Sports Medicine, 40(12), 958–965.  https://doi.org/10.1136/bjsm.2006.028860.CrossRefGoogle Scholar
  25. Schultz, S. A., Gordon, B. A., Mishra, S., Su, Y., Perrin, R. J., Cairns, N. J., Morris, J. C., Ances, B. M., & Benzinger, T. L. S. (2018). Widespread distribution of tauopathy in preclinical Alzheimer's disease. Neurobiology of Aging, 72, 177–185.  https://doi.org/10.1016/j.neurobiolaging.2018.08.022.CrossRefGoogle Scholar
  26. Su, Y., D'Angelo, G. M., Vlassenko, A. G., Zhou, G., Snyder, A. Z., Marcus, D. S., Blazey, T. M., Christensen, J. J., Vora, S., Morris, J. C., Mintun, M. A., & Benzinger, T. L. (2013). Quantitative analysis of PiB-PET with FreeSurfer ROIs. PLoS One, 8(11), e73377.  https://doi.org/10.1371/journal.pone.0073377.CrossRefGoogle Scholar
  27. Su, Y., Blazey, T. M., Snyder, A. Z., Raichle, M. E., Marcus, D. S., Ances, B. M., et al. (2015). Partial volume correction in quantitative amyloid imaging. Neuroimage, 107, 55–64.  https://doi.org/10.1016/j.neuroimage.2014.11.058.CrossRefGoogle Scholar
  28. Su, Y., Blazey, T. M., Owen, C. J., Christensen, J. J., Friedrichsen, K., Joseph-Mathurin, N., … Dominantly Inherited Alzheimer, N. (2016). Quantitative amyloid imaging in autosomal dominant Alzheimer's disease: Results from the DIAN study group. PLoS One, 11(3), e0152082.  https://doi.org/10.1371/journal.pone.0152082.
  29. Tautvydaite, D., Antonietti, J. P., Henry, H., von Gunten, A., & Popp, J. (2017). Relations between personality changes and cerebrospinal fluid biomarkers of Alzheimer's disease pathology. Journal of Psychiatric Research, 90, 12–20.  https://doi.org/10.1016/j.jpsychires.2016.12.024.CrossRefGoogle Scholar
  30. Terracciano, A., McCrae, R. R., Brant, L. J., & Costa, P. T. (2005). Hierarchical linear modeling analyses of the NEO-PI-R scales in the Baltimore longitudinal study of aging. Psychology and Aging, 20(3), 493–506.  https://doi.org/10.1037/0882-7974.20.3.493.CrossRefGoogle Scholar
  31. Terracciano, A., Sutin, A. R., An, Y., O'Brien, R. J., Ferrucci, L., Zonderman, A. B., & Resnick, S. M. (2014). Personality and risk of Alzheimer's disease: New data and meta-analysis. Alzheimer's & Dementia, 10(2), 179–186.  https://doi.org/10.1016/j.jalz.2013.03.002.CrossRefGoogle Scholar
  32. Terracciano, A., An, Y., Sutin, A. R., Thambisetty, M., & Resnick, S. M. (2017). Personality change in the preclinical phase of Alzheimer disease. JAMA Psychiatry, 74(12), 1259–1265.  https://doi.org/10.1001/jamapsychiatry.2017.2816.CrossRefGoogle Scholar
  33. Valli, I., Crossley, N. A., Day, F., Stone, J., Tognin, S., Mondelli, V., Howes, O., Valmaggia, L., Pariante, C., & McGuire, P. (2016). HPA-axis function and grey matter volume reductions: Imaging the diathesis-stress model in individuals at ultra-high risk of psychosis. Translational Psychiatry, 6, e797.  https://doi.org/10.1038/tp.2016.68 https://www.nature.com/articles/tp201668#supplementary-information.CrossRefGoogle Scholar
  34. Wang, L., Benzinger, T. L., Su, Y., Christensen, J., Friedrichsen, K., Aldea, P., McConathy, J., Cairns, N. J., Fagan, A. M., Morris, J. C., & Ances, B. M. (2016). Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and Tauopathy. JAMA Neurology, 73(9), 1070–1077.  https://doi.org/10.1001/jamaneurol.2016.2078.CrossRefGoogle Scholar
  35. Wilson, R. S., Schneider, J. A., Arnold, S. E., Bienias, J. L., & Bennett, D. A. (2007). Conscientiousness and the incidence of alzheimer disease and mild cognitive impairment. Archives of General Psychiatry, 64(10), 1204–1212.  https://doi.org/10.1001/archpsyc.64.10.1204.CrossRefGoogle Scholar
  36. Zufferey, V., Donati, A., Popp, J., Meuli, R., Rossier, J., Frackowiak, R., Draganski, B., von Gunten, A., & Kherif, F. (2017). Neuroticism, depression, and anxiety traits exacerbate the state of cognitive impairment and hippocampal vulnerability to Alzheimer's disease. Alzheimers Dement (Amst), 7, 107–114.  https://doi.org/10.1016/j.dadm.2017.05.002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Stephanie A. Schultz
    • 1
    • 2
  • Brian A. Gordon
    • 2
    • 3
    • 4
  • Shruti Mishra
    • 2
    • 5
  • Yi Su
    • 2
    • 6
  • John C. Morris
    • 3
    • 7
  • Beau M. Ances
    • 3
    • 7
  • Janet M. Duchek
    • 3
    • 4
  • David A. Balota
    • 3
    • 4
  • Tammie L. S. Benzinger
    • 2
    • 3
    • 8
    Email author
  1. 1.Division of Biology and Biomedical SciencesWashington University School of MedicineSt. LouisUSA
  2. 2.Department of RadiologyWashington University School of MedicineSt. LouisUSA
  3. 3.Knight Alzheimer’s Disease Research CenterWashington University School of MedicineSt. LouisUSA
  4. 4.Department of Psychological & Brain SciencesWashington UniversitySt. LouisUSA
  5. 5.Department of RadiologyMass General HospitalBostonUSA
  6. 6.Banner Alzheimer’s InstitutePhoenixUSA
  7. 7.Department of NeurologyWashington University School of MedicineSt. LouisUSA
  8. 8.Department of Neurological SurgeryWashington University School of MedicineSt. LouisUSA

Personalised recommendations