Advertisement

Irregular structural networks of gray matter in patients with type 2 diabetes mellitus

  • Chuanlong Cao
  • Wanqing Liu
  • Qing ZhangEmail author
  • Jian-lin WuEmail author
  • Yumei Sun
  • Danyang Li
  • Hongyu Fan
  • Feifei Wang
ORIGINAL RESEARCH
  • 24 Downloads

Abstract

Type 2 diabetes mellitus (T2DM) induces dementia and cognitive decrements indicating the impairment of the central nervous system. While there is evidence showing abnormalities in white-matter structural networks in T2DM, the topological features of gray matter are still unknown. The study enrolled 30 right-handed T2DM patients and 20 healthy control subjects with matched age, gender, handedness, and education. Graph theoretical analysis of magnetic resonance imaging on gray matter volume was conducted to explore large-scale structural networks of brain. Although retaining small-worldness characteristics, the structural networks of grey matter in the T2DM group exhibited an increased clustering coefficient, prolonged characteristic path, decreased global efficiency, and more vulnerability to random failures or targeted attacks compared with controls. Additionally, the degree of structural networks in both T2DM and control groups was distributed exponentially in truncated power law. Our findings suggest that T2DM disturbed the overall topological features of gray matter networks, which provides a novel insight into the neurobiological mechanisms accounting for the cognitive impairment of T2DM patients.

Keywords

Graph theory Structural networks Type 2 diabetes Network efficiency Network robustness Gray matter 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant no. 81371526).

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical statement

All procedures followed were in accordance with the national health and Family Planning Commission “biomedical research involving human ethics review approach” (the National Health Commission Order No. 11), “Helsinki declaration” of the World Medical Association, the ethical principle of CIOMS “International Ethical Guidelines for Biomedical Research Involving Human Subjects”. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2019_70_MOESM1_ESM.xlsx (3.3 mb)
ESM 1 (XLSX 3378 kb)

References

  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.  https://doi.org/10.1371/journal.pcbi.0030017.CrossRefGoogle Scholar
  2. Albert, R., Jeong, H., & Barabasi, A. L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–382.  https://doi.org/10.1038/35019019.CrossRefGoogle Scholar
  3. Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013a). Imaging structural co-variance between human brain regions. Nature Reviews. Neuroscience, 14(5), 322–336.  https://doi.org/10.1038/nrn3465.CrossRefGoogle Scholar
  4. Alexander-Bloch, A., Raznahan, A., Bullmore, E., & Giedd, J. (2013b). The convergence of maturational change and structural covariance in human cortical networks. The Journal of Neuroscience, 33(7), 2889–2899.  https://doi.org/10.1523/JNEUROSCI.3554-12.2013.CrossRefGoogle Scholar
  5. Amaral, L. A., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11149–11152.  https://doi.org/10.1073/pnas.200327197.CrossRefGoogle Scholar
  6. Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6), 512–523.  https://doi.org/10.1177/1073858406293182.CrossRefGoogle Scholar
  7. Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28(37), 9239–9248.  https://doi.org/10.1523/JNEUROSCI.1929-08.2008.CrossRefGoogle Scholar
  8. Bernhardt, B. C., Chen, Z., He, Y., Evans, A. C., & Bernasconi, N. (2011). Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cerebral Cortex, 21(9), 2147–2157.  https://doi.org/10.1093/cercor/bhq291.CrossRefGoogle Scholar
  9. Biessels, G. J., Strachan, M. W., Visseren, F. L., Kappelle, L. J., & Whitmer, R. A. (2014). Dementia and cognitive decline in type 2 diabetes and prediabetic stages: Towards targeted interventions. The Lancet Diabetes and Endocrinology, 2(3), 246–255.  https://doi.org/10.1016/S2213-8587(13)70088-3.CrossRefGoogle Scholar
  10. Brundel, M., van den Heuvel, M., de Bresser, J., Kappelle, L. J., Biessels, G. J., & Utrecht Diabetic Encephalopathy Study, G. (2010). Cerebral cortical thickness in patients with type 2 diabetes. Journal of the Neurological Sciences, 299(1–2), 126–130.  https://doi.org/10.1016/j.jns.2010.08.048.CrossRefGoogle Scholar
  11. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.  https://doi.org/10.1038/nrn2575.CrossRefGoogle Scholar
  12. Chen, Z., Li, L., Sun, J., & Ma, L. (2012). Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL. European Journal of Radiology, 81(8), 1870–1876.  https://doi.org/10.1016/j.ejrad.2011.04.025.CrossRefGoogle Scholar
  13. Chen, G. Q., Zhang, X., Xing, Y., Wen, D., Cui, G. B., & Han, Y. (2017). Resting-state functional magnetic resonance imaging shows altered brain network topology in type 2 diabetic patients without cognitive impairment. Oncotarget, 8(61), 104560–104570.  https://doi.org/10.18632/oncotarget.21282.Google Scholar
  14. Cui, Y., Jiao, Y., Chen, Y. C., Wang, K., Gao, B., Wen, S., … Teng, G. J. (2014). Altered spontaneous brain activity in type 2 diabetes: A resting-state functional MRI study. Diabetes, 63(2), 749–760.  https://doi.org/10.2337/db13-0519.
  15. den Heijer, T., Vermeer, S. E., van Dijk, E. J., Prins, N. D., Koudstaal, P. J., Hofman, A., & Breteler, M. M. (2003). Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia, 46(12), 1604–1610.  https://doi.org/10.1007/s00125-003-1235-0.CrossRefGoogle Scholar
  16. Espeland, M. A., Bryan, R. N., Goveas, J. S., Robinson, J. G., Siddiqui, M. S., Liu, S., … Group, W.-M. S. (2013). Influence of type 2 diabetes on brain volumes and changes in brain volumes: Results from the Women's Health Initiative magnetic resonance imaging studies. Diabetes Care, 36(1), 90–97.  https://doi.org/10.2337/dc12-0555.
  17. Fan, Y., Shi, F., Smith, J. K., Lin, W., Gilmore, J. H., & Shen, D. (2011). Brain anatomical networks in early human brain development. Neuroimage, 54(3), 1862–1871.  https://doi.org/10.1016/j.neuroimage.2010.07.025.CrossRefGoogle Scholar
  18. Gold, S. M., Dziobek, I., Sweat, V., Tirsi, A., Rogers, K., Bruehl, H., … Convit, A. (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50(4), 711–719.  https://doi.org/10.1007/s00125-007-0602-7.
  19. Griffiths, K. R., Grieve, S. M., Kohn, M. R., Clarke, S., Williams, L. M., & Korgaonkar, M. S. (2016). Altered gray matter organization in children and adolescents with ADHD: A structural covariance connectome study. Translational Psychiatry, 6(11), e947.  https://doi.org/10.1038/tp.2016.219.CrossRefGoogle Scholar
  20. He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23(4), 341–350.  https://doi.org/10.1097/WCO.0b013e32833aa567.Google Scholar
  21. He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 2407–2419.  https://doi.org/10.1093/cercor/bhl149.CrossRefGoogle Scholar
  22. He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. The Journal of Neuroscience, 28(18), 4756–4766.  https://doi.org/10.1523/JNEUROSCI.0141-08.2008.CrossRefGoogle Scholar
  23. Hosseini, S. M., Hoeft, F., & Kesler, S. R. (2012). GAT: A graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLoS One, 7(7), e40709.  https://doi.org/10.1371/journal.pone.0040709.CrossRefGoogle Scholar
  24. Hosseini, S. M., Black, J. M., Soriano, T., Bugescu, N., Martinez, R., Raman, M. M., … Hoeft, F. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. Neuroimage, 71, 260–274.  https://doi.org/10.1016/j.neuroimage.2013.01.013.
  25. Hosseini, S. M., Mazaika, P., Mauras, N., Buckingham, B., Weinzimer, S. A., Tsalikian, E., … Diabetes Research in Children, N. (2016). Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes. Hum Brain Mapp, 37(11), 4034–4046.  https://doi.org/10.1002/hbm.23293.
  26. Hsu, J. L., Chen, Y. L., Leu, J. G., Jaw, F. S., Lee, C. H., Tsai, Y. F., et al. (2012). Microstructural white matter abnormalities in type 2 diabetes mellitus: A diffusion tensor imaging study. Neuroimage, 59(2), 1098–1105.  https://doi.org/10.1016/j.neuroimage.2011.09.041.CrossRefGoogle Scholar
  27. Kim, D. J., Yu, J. H., Shin, M. S., Shin, Y. W., & Kim, M. S. (2016). Hyperglycemia reduces efficiency of brain networks in subjects with type 2 diabetes. PLoS One, 11(6), e0157268.  https://doi.org/10.1371/journal.pone.0157268.CrossRefGoogle Scholar
  28. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701.  https://doi.org/10.1103/PhysRevLett.87.198701.CrossRefGoogle Scholar
  29. Maslov, S., & Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296(5569), 910–913.  https://doi.org/10.1126/science.1065103.CrossRefGoogle Scholar
  30. McCrimmon, R. J., Ryan, C. M., & Frier, B. M. (2012). Diabetes and cognitive dysfunction. Lancet, 379(9833), 2291–2299.  https://doi.org/10.1016/S0140-6736(12)60360-2.CrossRefGoogle Scholar
  31. Musen, G., Jacobson, A. M., Bolo, N. R., Simonson, D. C., Shenton, M. E., McCartney, R. L., et al. (2012). Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes, 61(9), 2375–2379.  https://doi.org/10.2337/db11-1669.CrossRefGoogle Scholar
  32. Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: A comparative review. Statistical Methods in Medical Research, 12(5), 419–446.  https://doi.org/10.1191/0962280203sm341ra.CrossRefGoogle Scholar
  33. Novak, V., Zhao, P., Manor, B., Sejdic, E., Alsop, D., Abduljalil, A., et al. (2011). Adhesion molecules, altered vasoreactivity, and brain atrophy in type 2 diabetes. Diabetes Care, 34(11), 2438–2441.  https://doi.org/10.2337/dc11-0969.CrossRefGoogle Scholar
  34. Reijmer, Y. D., Brundel, M., de Bresser, J., Kappelle, L. J., Leemans, A., Biessels, G. J., & Utrecht Vascular Cognitive Impairment Study, G. (2013a). Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes: A diffusion tensor imaging study. Diabetes Care, 36(1), 137–144.  https://doi.org/10.2337/dc12-0493.CrossRefGoogle Scholar
  35. Reijmer, Y. D., Leemans, A., Brundel, M., Kappelle, L. J., Biessels, G. J., & Utrecht Vascular Cognitive Impairment Study, G. (2013b). Disruption of the cerebral white matter network is related to slowing of information processing speed in patients with type 2 diabetes. Diabetes, 62(6), 2112–2115.  https://doi.org/10.2337/db12-1644.CrossRefGoogle Scholar
  36. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069.  https://doi.org/10.1016/j.neuroimage.2009.10.003.CrossRefGoogle Scholar
  37. Shimoji, K., Abe, O., Uka, T., Yasmin, H., Kamagata, K., Asahi, K., … Aoki, S. (2013). White matter alteration in metabolic syndrome: Diffusion tensor analysis. Diabetes Care, 36(3), 696–700.  https://doi.org/10.2337/dc12-0666.
  38. Singh, M. K., Kesler, S. R., Hadi Hosseini, S. M., Kelley, R. G., Amatya, D., Hamilton, J. P., et al. (2013). Anomalous gray matter structural networks in major depressive disorder. Biological Psychiatry, 74(10), 777–785.  https://doi.org/10.1016/j.biopsych.2013.03.005.CrossRefGoogle Scholar
  39. Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2(2), 145–162.  https://doi.org/10.1385/NI:2:2:145.CrossRefGoogle Scholar
  40. Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418–425.  https://doi.org/10.1016/j.tics.2004.07.008.CrossRefGoogle Scholar
  41. Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer's disease. Cerebral Cortex, 17(1), 92–99.  https://doi.org/10.1093/cercor/bhj127.CrossRefGoogle Scholar
  42. Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276.  https://doi.org/10.1038/35065725.CrossRefGoogle Scholar
  43. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.  https://doi.org/10.1006/nimg.2001.0978.
  44. van Bussel, F. C., Backes, W. H., van Veenendaal, T. M., Hofman, P. A., van Boxtel, M. P., Schram, M. T., … Jansen, J. F. (2016). Functional brain networks are altered in type 2 diabetes and prediabetes: Signs for compensation of cognitive decrements? The Maastricht study. Diabetes, 65(8), 2404–2413.  https://doi.org/10.2337/db16-0128.
  45. van Wijk, B. C., Stam, C. J., & Daffertshofer, A. (2010). Comparing brain networks of different size and connectivity density using graph theory. PLoS One, 5(10), e13701.  https://doi.org/10.1371/journal.pone.0013701.CrossRefGoogle Scholar
  46. Wang, C. X., Fu, K. L., Liu, H. J., Xing, F., & Zhang, S. Y. (2014). Spontaneous brain activity in type 2 diabetics revealed by amplitude of low-frequency fluctuations and its association with diabetic vascular disease: A resting-state FMRI study. PLoS One, 9(10), e108883.  https://doi.org/10.1371/journal.pone.0108883.CrossRefGoogle Scholar
  47. Wang, Z. L., Zou, L., Lu, Z. W., Xie, X. Q., Jia, Z. Z., Pan, C. J., et al. (2017). Abnormal spontaneous brain activity in type 2 diabetic retinopathy revealed by amplitude of low-frequency fluctuations: A resting-state fMRI study. Clinical Radiology, 72(4), 340 e341–340 e347.  https://doi.org/10.1016/j.crad.2016.11.012.CrossRefGoogle Scholar
  48. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440–442.  https://doi.org/10.1038/30918.CrossRefGoogle Scholar
  49. Xia, M., Wang, J., & He, Y. (2013a). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.  https://doi.org/10.1371/journal.pone.0068910.CrossRefGoogle Scholar
  50. Xia, W., Wang, S., Sun, Z., Bai, F., Zhou, Y., Yang, Y., et al. (2013b). Altered baseline brain activity in type 2 diabetes: A resting-state fMRI study. Psychoneuroendocrinology, 38(11), 2493–2501.  https://doi.org/10.1016/j.psyneuen.2013.05.012.CrossRefGoogle Scholar
  51. Xu, Y., Wang, L., He, J., Bi, Y., Li, M., Wang, T., et al. (2013). Prevalence and control of diabetes in Chinese adults. JAMA, 310(9), 948–959.  https://doi.org/10.1001/jama.2013.168118.CrossRefGoogle Scholar
  52. Yang, S. Q., Xu, Z. P., Xiong, Y., Zhan, Y. F., Guo, L. Y., Zhang, S., et al. (2016). Altered Intranetwork and internetwork functional connectivity in type 2 diabetes mellitus with and without cognitive impairment. Scientific Reports, 6, 32980.  https://doi.org/10.1038/srep32980.CrossRefGoogle Scholar
  53. Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T., & Alzheimer's Disease Neuroimaging, I. (2010). Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLoS Computational Biology, 6(11), e1001006.  https://doi.org/10.1371/journal.pcbi.1001006.CrossRefGoogle Scholar
  54. Zhang, Y., Lin, L., Lin, C. P., Zhou, Y., Chou, K. H., Lo, C. Y., et al. (2012). Abnormal topological organization of structural brain networks in schizophrenia. Schizophrenia Research, 141(2–3), 109–118.  https://doi.org/10.1016/j.schres.2012.08.021.CrossRefGoogle Scholar
  55. Zhang, A., Ajilore, O., Zhan, L., Gadelkarim, J., Korthauer, L., Yang, S., et al. (2013). White matter tract integrity of anterior limb of internal capsule in major depression and type 2 diabetes. Neuropsychopharmacology, 38(8), 1451–1459.  https://doi.org/10.1038/npp.2013.41.CrossRefGoogle Scholar
  56. Zhang, J., Liu, Z., Li, Z., Wang, Y., Chen, Y., Li, X., … Zhang, Z. (2016). Disrupted white matter network and cognitive decline in type 2 diabetes patients. Journal of Alzheimer's Disease, 53(1), 185–195.  https://doi.org/10.3233/JAD-160111.
  57. Zhang, Y., Qiu, T., Yuan, X., Zhang, J., Wang, Y., Zhang, N., et al. (2018). Abnormal topological organization of structural covariance networks in amyotrophic lateral sclerosis. Neuroimage Clin.  https://doi.org/10.1016/j.nicl.2018.101619.
  58. Zhou, H., Lu, W., Shi, Y., Bai, F., Chang, J., Yuan, Y., et al. (2010). Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neuroscience Letters, 473(1), 5–10.  https://doi.org/10.1016/j.neulet.2009.12.057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chuanlong Cao
    • 1
  • Wanqing Liu
    • 1
  • Qing Zhang
    • 1
    Email author
  • Jian-lin Wu
    • 1
    Email author
  • Yumei Sun
    • 1
  • Danyang Li
    • 1
  • Hongyu Fan
    • 1
  • Feifei Wang
    • 2
  1. 1.Department of RadiologyAffiliated Zhongshan Hospital of Dalian UniversityDalianChina
  2. 2.Department of MRIThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations