Advertisement

Difference in neural reactivity to taste stimuli and visual food stimuli in neural circuits of ingestive behavior

  • Yuko NakamuraEmail author
  • Masahiro Imafuku
  • Hironori Nakatani
  • Atsushi Nishida
  • Shinsuke Koike
ORIGINAL RESEARCH

Abstract

Brain responses to sight and taste of foods have been examined to provide insights into neural substrates of ingestive behavior. Since the brain response to food images and taste stimuli are overlapped in neural circuits of eating behavior, each food cue would influence eating behavior in a partly similar manner. However, because few studies have examined the differences in brain responses to each food cue, the variation in neural sensitivity to these food cues or specific brain response to each food cue remain unclear. We thus performed a repeated measures functional magnetic resonance imaging (fMRI) study to examine brain responses to the image and taste of various foods for direct comparisons of the brain response to each food cue. Thirty-five healthy adolescents (age: 14–19 years [mean: 17 years], males = 16, females = 19) underwent two fMRI scans, a food image fMRI scan for measurement of brain response to food images, and a taste stimulus fMRI scan for measurement of brain response to taste stimuli. Food images evoked brain responses in the visual information processing regions, anterior insula, striatum, and pre−/postcentral gyrus compared to taste stimuli, whereas taste stimuli induced brain responses in the mid-insula and limbic regions compared to food images. These results imply that food images tend to evoke brain responses in regions associated with food reward anticipation and food choice, whereas taste stimuli tend to induce brain responses in regions involved in assigning existent incentive values to foods based on existent energy homeostatic status.

Keywords

Visual food cues Taste food cues Ingestive behavior Functional magnetic resonance imaging 

Notes

Acknowledgements

This study was supported by the 12th Hakuho Research Grant for Child Education from Hakuho Foundation and Grant-in-Aids for Early-Career Scientists from Japan Society for the Promotion of Science (17 K13931), and in part by UTokyo Center for Integrative Science of Human Behaviour (CiSHuB) and the International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS).

Author contributions

Y. Nakamura, contributed to the conception and design of the study, data acquisition, analysis and interpretation, and drafted the manuscript; M. Imafuku, contributed to data acquisition and interpretation; H. Nakatani, contributed to data acquisition and interpretation. A. Nishida, contributed to data acquisition and interpretation; S. Koike, contributed to data acquisition, interpretation, and drafted the manuscript.

All authors have provided the final approval and agree to be accountable for all aspects of the work.

Funding

This work was supported by 12th Hakuho Research Grant for Child Education from Hakuho Foundation and Grant-in-Aids for Early-Career Scientists from Japan Society for the Promotion of Science (17 K13931).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Ethics Committee at the Department of Arts and Sciences, the University of Tokyo (Approval No. 513–2).

Informed consent

Informed consent was obtained from all individual participants included in the study. Informed consent was also obtained from parents/guardians for high school or middle school participants.

Supplementary material

11682_2019_48_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)

References

  1. Behary, P., & Miras, A. D. (2014). Brain responses to food and weight loss. Experimental Physiology, 99(9), 1121–1127.  https://doi.org/10.1113/expphysiol.2014.078303.CrossRefGoogle Scholar
  2. Berridge, K. C. (2009). ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537–550.  https://doi.org/10.1016/j.physbeh.2009.02.044.CrossRefGoogle Scholar
  3. Burger, K. S., & Stice, E. (2012). Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. The American Journal of Clinical Nutrition, 95(4), 810–817.  https://doi.org/10.3945/ajcn.111.027003.CrossRefGoogle Scholar
  4. Burger, K. S., & Stice, E. (2014a). Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth. Obesity (Silver Spring, Md.), 22(2), 441–450.  https://doi.org/10.1002/oby.20563.CrossRefGoogle Scholar
  5. Burger, K. S., & Stice, E. (2014b). Greater striatopallidal adaptive coding during cue-reward learning and food reward habituation predict future weight gain. NeuroImage, 99, 122–128.  https://doi.org/10.1016/j.neuroimage.2014.05.066.CrossRefGoogle Scholar
  6. Buschman, T. J., & Miller, E. K. (2014). Goal-direction and top-down control. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1655), 20130471.  https://doi.org/10.1098/rstb.2013.0471.CrossRefGoogle Scholar
  7. Camara, E., Rodriguez-Fornells, A., & Münte, T. F. (2009). Functional connectivity of reward processing in the Brain. Frontiers in Human Neuroscience, 2.  https://doi.org/10.3389/neuro.09.019.2008.
  8. Carmichael, S. T., & Price, J. L. (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. The Journal of Comparative Neurology, 363(4), 615–641.  https://doi.org/10.1002/cne.903630408.CrossRefGoogle Scholar
  9. Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews. Neuroscience, 3(8), 655–666.  https://doi.org/10.1038/nrn894.CrossRefGoogle Scholar
  10. de Araujo, I. E., & Simon, S. A. (2009). The gustatory cortex and multisensory integration. International Journal of Obesity (2005), 33(Suppl 2), S34–S43.  https://doi.org/10.1038/ijo.2009.70.CrossRefGoogle Scholar
  11. Domenico, D., I, S., & Ryan, R. M. (2017). The emerging neuroscience of intrinsic motivation: A new frontier in self-determination research. Frontiers in Human Neuroscience, 11.  https://doi.org/10.3389/fnhum.2017.00145.
  12. Frank, S., Kullmann, S., & Veit, R. (2013). Food related processes in the insular cortex. Frontiers in Human Neuroscience, 7.  https://doi.org/10.3389/fnhum.2013.00499.
  13. García-García, I., Narberhaus, A., Marqués-Iturria, I., Garolera, M., Rădoi, A., Segura, B., Pueyo, R., Ariza, M., & Jurado, M. A. (2013). Neural responses to visual food cues: Insights from functional magnetic resonance imaging. European Eating Disorders Review: The Journal of the Eating Disorders Association, 21(2), 89–98.  https://doi.org/10.1002/erv.2216.CrossRefGoogle Scholar
  14. Gearhardt, A. N., Yokum, S., Stice, E., Harris, J. L., & Brownell, K. D. (2014). Relation of obesity to neural activation in response to food commercials. Social Cognitive and Affective Neuroscience, 9(7), 932–938.  https://doi.org/10.1093/scan/nst059.CrossRefGoogle Scholar
  15. Grabenhorst, F., & Rolls, E. T. (2008). Selective attention to affective value alters how the brain processes taste stimuli. The European Journal of Neuroscience, 27(3), 723–729.  https://doi.org/10.1111/j.1460-9568.2008.06033.x.CrossRefGoogle Scholar
  16. Haase, L., Cerf-Ducastel, B., & Murphy, C. (2009). Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. NeuroImage, 44(3), 1008–1021.  https://doi.org/10.1016/j.neuroimage.2008.09.044.CrossRefGoogle Scholar
  17. Higgs, S. (2016). Cognitive processing of food rewards. Appetite, 104, 10–17.  https://doi.org/10.1016/j.appet.2015.10.003.CrossRefGoogle Scholar
  18. Huerta, C. I., Sarkar, P. R., Duong, T. Q., Laird, A. R., & Fox, P. T. (2014). Neural bases of food perception: Coordinate-based meta-analyses of neuroimaging studies in multiple modalities. Obesity (Silver Spring, Md.), 22(6), 1439–1446.  https://doi.org/10.1002/oby.20659.CrossRefGoogle Scholar
  19. Jenison, R. L., Rangel, A., Oya, H., Kawasaki, H., & Howard, M. A. (2011). Value encoding in single neurons in the human amygdala during decision making. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(1), 331–338.  https://doi.org/10.1523/JNEUROSCI.4461-10.2011.CrossRefGoogle Scholar
  20. Jenkinson, M. (2003). Fast, automated, N-dimensional phase-unwrapping algorithm. Magnetic Resonance in Medicine, 49(1), 193–197.  https://doi.org/10.1002/mrm.10354.CrossRefGoogle Scholar
  21. Kanoski, S. E., & Grill, H. J. (2017). Hippocampus contributions to food intake control: Mnemonic, neuroanatomical, and endocrine mechanisms. Biological Psychiatry, 81(9), 748–756.  https://doi.org/10.1016/j.biopsych.2015.09.011.CrossRefGoogle Scholar
  22. Kanoski, S. E., Hayes, M. R., Greenwald, H. S., Fortin, S. M., Gianessi, C. A., Gilbert, J. R., & Grill, H. J. (2011). Hippocampal leptin signaling reduces food intake and modulates food-related memory processing. Neuropsychopharmacology, 36(9), 1859–1870.  https://doi.org/10.1038/npp.2011.70.CrossRefGoogle Scholar
  23. Killgore, W. D. S., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortical and limbic activation during viewing of high- versus low-calorie foods. NeuroImage, 19(4), 1381–1394.CrossRefGoogle Scholar
  24. Kullmann, S., Pape, A.-A., Heni, M., Ketterer, C., Schick, F., Häring, H.-U., Fritsche, A., Preissl, H., & Veit, R. (2013). Functional network connectivity underlying food processing: Disturbed salience and visual processing in overweight and obese adults. Cerebral Cortex, 23(5), 1247–1256.  https://doi.org/10.1093/cercor/bhs124.CrossRefGoogle Scholar
  25. Macey, P. M., Macey, K. E., Kumar, R., & Harper, R. M. (2004). A method for removal of global effects from fMRI time series. NeuroImage, 22(1), 360–366.  https://doi.org/10.1016/j.neuroimage.2003.12.042.CrossRefGoogle Scholar
  26. Mazaika, P., Whitfield, S., & Cooper, J. C. (2005). Detection and repair of transient artifacts in fMRI data (Vol. 26).Google Scholar
  27. Murdaugh, D. L., Cox, J. E., Cook, E. W., & Weller, R. E. (2012). fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. Neuroimage, 59(3), 2709–2721.CrossRefGoogle Scholar
  28. Ng, J., Stice, E., Yokum, S., & Bohon, C. (2011). An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing? Appetite, 57(1), 65–72.  https://doi.org/10.1016/j.appet.2011.03.017.CrossRefGoogle Scholar
  29. O’Doherty, J. P., Deichmann, R., Critchley, H. D., & Dolan, R. J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33(5), 815–826.CrossRefGoogle Scholar
  30. Paquet, C., de Montigny, L., Labban, A., Buckeridge, D., Ma, Y., Arora, N., & Dubé, L. (2017). The moderating role of food cue sensitivity in the behavioral response of children to their neighborhood food environment: A cross-sectional study. The International Journal of Behavioral Nutrition and Physical Activity, 14(1), 86.  https://doi.org/10.1186/s12966-017-0540-9.CrossRefGoogle Scholar
  31. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human Brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.  https://doi.org/10.1146/annurev-neuro-062111-150525.CrossRefGoogle Scholar
  32. Pursey, K. M., Stanwell, P., Callister, R. J., Brain, K., Collins, C. E., & Burrows, T. L. (2014). Neural responses to visual food cues according to weight status: A systematic review of functional magnetic resonance imaging studies. Frontiers in Nutrition, 1, 7.  https://doi.org/10.3389/fnut.2014.00007.CrossRefGoogle Scholar
  33. Reichelt, A. C., & Rank, M. M. (2017). The impact of junk foods on the adolescent brain. Birth Defects Research, 109(20), 1649–1658.  https://doi.org/10.1002/bdr2.1173.CrossRefGoogle Scholar
  34. Richard, J. M., Castro, D. C., Difeliceantonio, A. G., Robinson, M. J. F., & Berridge, K. C. (2013). Mapping brain circuits of reward and motivation: In the footsteps of Ann Kelley. Neuroscience and Biobehavioral Reviews, 37(9 Pt A), 1919–1931.  https://doi.org/10.1016/j.neubiorev.2012.12.008.CrossRefGoogle Scholar
  35. Rolls, E. T. (2012). Taste, olfactory and food texture reward processing in the brain and the control of appetite. The Proceedings of the Nutrition Society, 71(4), 488–501.  https://doi.org/10.1017/S0029665112000821.CrossRefGoogle Scholar
  36. Rolls, E. T. (2016). Reward Systems in the Brain and Nutrition. Annual Review of Nutrition, 36, 435–470.  https://doi.org/10.1146/annurev-nutr-071715-050725.CrossRefGoogle Scholar
  37. Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853–951.  https://doi.org/10.1152/physrev.00023.2014.CrossRefGoogle Scholar
  38. Scott, T. R., Edwards, E. M., Smith, C. A., Hilgert, K. G., Schwartz, G. J., & Pritchard, T. C. (2005). Medial orbitofrontal cortex: Its role in mediating satiety in the macaque. Chemical Senses, i190(30 Suppl), 1.  https://doi.org/10.1093/chemse/bjh178.Google Scholar
  39. Shearrer, G. E., Stice, E., & Burger, K. S. (2018). Adolescents at high risk of obesity show greater striatal response to increased sugar content in milkshakes. The American Journal of Clinical Nutrition, 107(6), 859–866.  https://doi.org/10.1093/ajcn/nqy050.CrossRefGoogle Scholar
  40. Siep, N., Roefs, A., Roebroeck, A., Havermans, R., Bonte, M. L., & Jansen, A. (2009). Hunger is the best spice: An fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behavioural Brain Research, 198(1), 149–158.  https://doi.org/10.1016/j.bbr.2008.10.035.CrossRefGoogle Scholar
  41. Simmons, W. K., Burrows, K., Avery, J. A., Kerr, K. L., Bodurka, J., Savage, C. R., & Drevets, W. C. (2016). Depression-related increases and decreases in appetite: Dissociable patterns of aberrant activity in reward and interoceptive Neurocircuitry. The American Journal of Psychiatry, 173(4), 418–428.  https://doi.org/10.1176/appi.ajp.2015.15020162.CrossRefGoogle Scholar
  42. Smith, A. R., Steinberg, L., & Chein, J. (2014). The role of the anterior insula in adolescent decision making. Developmental Neuroscience, 36(3–4), 196–209.  https://doi.org/10.1159/000358918.CrossRefGoogle Scholar
  43. Stice, E., & Yokum, S. (2018). Relation of neural response to palatable food tastes and images to future weight gain: Using bootstrap sampling to examine replicability of neuroimaging findings. NeuroImage, 183, 522–531.  https://doi.org/10.1016/j.neuroimage.2018.08.035.CrossRefGoogle Scholar
  44. Stice, E., Spoor, S., Bohon, C., Veldhuizen, M., & Small, D. (2008). Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study. Journal of Abnormal Psychology, 117(4), 924–935.  https://doi.org/10.1037/a0013600.CrossRefGoogle Scholar
  45. Stice, E., Burger, K. S., & Yokum, S. (2013). Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. The American Journal of Clinical Nutrition, 98(6), 1377–1384.  https://doi.org/10.3945/ajcn.113.069443.CrossRefGoogle Scholar
  46. Suzuki, S., Cross, L., & O’Doherty, J. P. (2017). Elucidating the underlying components of food valuation in the human orbitofrontal cortex. Nature Neuroscience, 20(12), 1780–1786.  https://doi.org/10.1038/s41593-017-0008-x.CrossRefGoogle Scholar
  47. Taylor, J. E., Ogawa, A., & Sakagami, M. (2016). Reward value enhances post-decision error-related activity in the cingulate cortex. Neuroscience Research, 107, 38–46.  https://doi.org/10.1016/j.neures.2015.12.009.CrossRefGoogle Scholar
  48. van der Laan, L. N., de Ridder, D. T. D., Viergever, M. A., & Smeets, P. a. M. (2011). The first taste is always with the eyes: A meta-analysis on the neural correlates of processing visual food cues. NeuroImage, 55(1), 296–303.  https://doi.org/10.1016/j.neuroimage.2010.11.055.CrossRefGoogle Scholar
  49. van Meer, F., Charbonnier, L., & Smeets, P. A. M. (2016). Food decision-making: Effects of weight status and age. Current Diabetes Reports, 16(9), 84.  https://doi.org/10.1007/s11892-016-0773-z.CrossRefGoogle Scholar
  50. Veldhuizen, M. G., Albrecht, J., Zelano, C., Boesveldt, S., Breslin, P., & Lundström, J. N. (2011). Identification of human gustatory cortex by activation likelihood estimation. Human Brain Mapping, 32(12), 2256–2266.  https://doi.org/10.1002/hbm.21188.CrossRefGoogle Scholar
  51. Volkow, N. D., Wang, G.-J., & Baler, R. D. (2011). Reward, dopamine and the control of food intake: Implications for obesity. Trends in Cognitive Sciences, 15(1), 37–46.  https://doi.org/10.1016/j.tics.2010.11.001.CrossRefGoogle Scholar
  52. Volkow, N. D., Wise, R. A., & Baler, R. (2017). The dopamine motive system: Implications for drug and food addiction. Nature Reviews. Neuroscience, 18(12), 741–752.  https://doi.org/10.1038/nrn.2017.130.CrossRefGoogle Scholar
  53. Walker, D. M., Bell, M. R., Flores, C., Gulley, J. M., Willing, J., & Paul, M. J. (2017). Adolescence and reward: Making sense of neural and behavioral changes amid the chaos. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(45), 10855–10866.  https://doi.org/10.1523/JNEUROSCI.1834-17.2017.CrossRefGoogle Scholar
  54. Yeung, A. W. K. (2018). Sex differences in brain responses to food stimuli: A meta-analysis on neuroimaging studies. Obesity Reviews, 19(8), 1110–1115.  https://doi.org/10.1111/obr.12697.CrossRefGoogle Scholar
  55. Yeung, A. W. K., Goto, T. K., & Leung, W. K. (2017). Basic taste processing recruits bilateral anteroventral and middle dorsal insulae: An activation likelihood estimation meta-analysis of fMRI studies. Brain and Behavior, 7(4), e00655.  https://doi.org/10.1002/brb3.655.CrossRefGoogle Scholar
  56. Yokum, S., Ng, J., & Stice, E. (2011). Attentional Bias to food images associated with elevated weight and future weight gain: An fMRI study. Obesity (Silver Spring, Md.), 19(9), 1775–1783.  https://doi.org/10.1038/oby.2011.168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Evolutionary Cognitive Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.Center for Integrative Science of Human Behavior, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  3. 3.Department of Child Development, Faculty of EducationMusashino UniversityTokyoJapan
  4. 4.RIKEN Center for Brain ScienceSaitamaJapan
  5. 5.Department of Psychiatry and Behavioral ScienceTokyo Metropolitan Institute of Medical ScienceTokyoJapan
  6. 6.University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM)TokyoJapan
  7. 7.International Research Center for Neurointelligence (WPI-IRCN)The University of Tokyo Institutes for Advanced Study (UTIAS)TokyoJapan

Personalised recommendations