Advertisement

Unmasking neurobiological commonalities between addictive disorders and impulse control disorders in Parkinson’s disease

  • Swathi RamdaveEmail author
  • Andrew Dawson
  • Adrian Carter
  • Nadeeka N. W. Dissanayaka
REVIEW ARTICLE
  • 33 Downloads

Abstract

Changes in reward circuitry have been studied extensively in substance and behavioural addictions. However, comparatively little is known about the neurobiology underlying impulse control disorders (ICDs) in Parkinson’s disease, which show roughly similar risk factors and behavioural presentations to both stimulant and behavioural addictions. ICDs occur in a subset of susceptible patients with Parkinson’s disease (PD) following intake of dopamine replacement therapy (DRT). These behavioural disorders often have debilitating effects on a patient’s quality of life and increase caregiver burden. This comprehensive review examined findings of 40 neuroimaging studies of ICDs in PD to determine (a) whether there are putative neurobiological commonalities between traditional substance and behavioural addictions and DRT-induced ICD in PD and (b) opportunities for future studies to advance current neurobiological understanding of the phenomenon. Results revealed that strikingly similar (a) deficits in dopaminergic receptor expression, (b) connectivity changes in corticostriatal circuitry and (c) neural responses to cue exposure are observed in both ICDs in PD and addictive disorders. These findings point to the value of adopting a transdiagnostic approach when studying addicted populations and pave the way for demystifying this peculiar, often-devastating phenomenon in PD that has so far proven extremely difficult to treat and predict with any precision.

Keywords

Addiction Dopamine Impulse control disorders Neuroimaging Parkinson’s disease 

Notes

Acknowledgements

Swathi Ramdave and Andrew Dawson are supported by an Australian Government Research Training Program Scholarship. Adrian Carter is supported by an NHMRC Career Development Fellowship (ID: APP1123311). Nadeeka Dissanayaka is supported by the NHMRC and Lions Medical Research Fellowship.

Author’s contribution

SR wrote first draft. SR and AD did literature search. SR, AD, AC and ND reviewed and edited the manuscript. SR, AD, AC and ND approved final version.

Funding

This review was funded by the Australian Government in the form of a Research Training Program Scholarship (SR/AD), Australian Research Council Discovery Early Career Researcher Award (ID: DE140101097) (AC) and National Health and Medical Research Council Career Development Fellowship (ID: APP1123311) (AC). NHMRC Boosting Dementia Research Leadership fellowship and Lions Medical Research Fellowship (ND).

Compliance with ethical standards

Conflict of interest

SR declares that she has no conflict of interest. AD declares that he has no conflict of interest. AC declares that he has no conflict of interest. ND declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adinoff, B. (2004). Neurobiological processes in drug reward and addiction. Harvard Review of Psychiatry, 12, 305–320.CrossRefGoogle Scholar
  2. Ambermoon, P., Carter, A., Hall, W., Dissanayaka, N., & O'Sullivan, J. (2011). Compulsive use of dopamine replacement therapy: a model for stimulant drug addiction? Addiction, 107, 241–247.CrossRefGoogle Scholar
  3. American Psychiatric Association. (2010). Diagnostic and statistical manual of mental disorders (DSM–5). Arlington: American Psychiatric Association Publishing.Google Scholar
  4. Arias-Carrion, O., Stamelou, M., Murillo-Rodriguez, E., Menedez-Gonzalez, M., & Poppel, E. (2010). Dopaminergic reward system: a short integrative review. International Archives of Medicine, 3, 24.CrossRefGoogle Scholar
  5. Beaulieu-Boire, I., & Lang, A. (2015). Behavioural effects of levodopa. Movement Disorders, 30, 90–102.CrossRefGoogle Scholar
  6. Biundo, R., Formento-Dojot, P., Facchini, S., Vallelunga, A., Ghezzo, L., Foscolo, L., Meneghello, F., & Antonini, A. (2011). Brain volume changes in Parkinson’s disease and their relationship with cognitive and behavioural abnormalities. Journal of the Neurological Sciences, 310(1–2), 64–69.Google Scholar
  7. Biundo, R., Weis, L., Fachini, S., Formento-Dojot, P., Vallelunga, A., Pilleri, M., Weintraub, D., et al. (2015). Patterns of cortical thickness associated with impulse control disorders in Parkinson’s disease. Movement Disorders, 30, 688–695.CrossRefGoogle Scholar
  8. Blasi, G., Goldberg, T. E., Weickert, T., Das, S., Kohn, P., Zoltick, B., Bertolino, A., Callicott, J. H., Weinberger, D. R., & Mattay, V. S. (2006). Brain regions underlying response inhibition and inference monitoring and suppression. The European Journal of Neuroscience, 23(6), 1658–1664.CrossRefGoogle Scholar
  9. Blum, K., Wood, R. C., Braverman, E. R., Chen, T. J., & Sheridan, P. J. (1995). The D2 dopamine receptor gene as a predictor of compulsive disease: Bayes’ theorem. Functional Neurology, 10, 37–44.Google Scholar
  10. Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D., Lubar, J. O., Chen, T. J. H., & Comings, D. E. (2000). Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviours. Journal of Psychoactive Drugs, 32, 1–112.CrossRefGoogle Scholar
  11. Brody, A., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. J., Ho, M. L., et al. (2002). Brain metabolic changes during cigarette craving. Archives of General Psychiatry, 59, 1162–1172.CrossRefGoogle Scholar
  12. Brody, A. L., Maldelkern, M. A., Olmstead, R. E., Jou, J., Tiongson, E., Allen, V., Scheibal, D., et al. (2007). Neural substrates of resisting craving during cigarette cue exposure. Biological Psychiatry, 62(6), 642–651.CrossRefGoogle Scholar
  13. Buckholtz, J. W. (2015). Social norms, self-control, and the value of antisocial behavior. Current Opinion in Behavioral Sciences 3, 122–129.Google Scholar
  14. Canu, E., Agosta, D., Markovic, V., Petrovic, I., Stankovic, I., Imperiale, F., Stojkovic, T., et al. (2017). White matter tract alterations in Parkinson’s disease patients with punding. Parkinsonism & Related Disorders, 43, 85–91.CrossRefGoogle Scholar
  15. Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26(3), 321–352.CrossRefGoogle Scholar
  16. Carriere, N., Lopes, R., Defebvre, L., Delmaire, C., & Dujardin, K. (2015). Impaired corticostriatal connectivity in impulse control disorders in Parkinson disease. Neurology, 84, 2116–2123.CrossRefGoogle Scholar
  17. Cerasa, A., Salsone, M., Nigro, S., Chiriaco, C., Donzuso, G., Bosco, D., Vasta, R., & Quattrone, A. (2014). Cortical volume and folding abnormalities in Parkinson’s disease patients with pathological gambling. Parkinsonism & Related Disorders, 20, 1209–1214.CrossRefGoogle Scholar
  18. Cilia, R., Siri, C., Marotta, G., Isaias, I. U., De Gaspari, D., Canesi, M., Pezzoli, G., et al. (2008). Functional abnormalities underlying pathological gambling in Parkinson disease. Archives of Neurology, 65, 1604–1611.CrossRefGoogle Scholar
  19. Cilia, R., Ko, J. H., Cho, S. S., van Eimeren, T., Marotta, G., Pellecchia, G., Pezzoli, G., Antonini, A., & Strafella, A. P. (2010). Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiology of Disease, 39(1), 98–104.Google Scholar
  20. Classen, D. O., Stark, A. J., Spears, C. A., Petersen, K. J., van Wouwe, N. C., Kessler, R. M., Zald, D. H., et al. (2017). Mesocorticolimbic hemodynamic response in Parkinson’s disease patients with compulsive behaviours. Movement Disorders, 32, 1574–1583.CrossRefGoogle Scholar
  21. Claus, E. D., Ewing, S. W. F., Filbey, F. M., Sabbineni, A., & Hutchison, K. E. (2011). Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology, 36, 2086–2096.CrossRefGoogle Scholar
  22. Dawson, A., Dissanayaka, N. N., Evans, A., Verdejo-Garcia, A., Chong, T. T. C., et al. (2018). Neurocognitive correlates of medication-induced addictive behaviours in Parkinoson’s disease: a systematic review. European Neuropsychopharmacology (In press), 28, 561–578.CrossRefGoogle Scholar
  23. Evans, A. H., Pavese, N., Lawrence, A. D., Tai, Y. F., Appel, S., Doder, M., Brooks, D. J., Lees, A. J., & Piccini, P. (2006). Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology, 59, 852–858.CrossRefGoogle Scholar
  24. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 1481–1489.CrossRefGoogle Scholar
  25. Everitt, B. J., & Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neuroscience and Biobehavioural Reviews, 37(9), 1946–1954.CrossRefGoogle Scholar
  26. Everitt, B. J., & Robbins, T. W. (2016). Drug addiction: updating actions to habits to compulsions ten years on. Annual Review of Psychology 67(1), 23–50.Google Scholar
  27. Fedota, J., & Stein, E. (2015). Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Annals of the New York Academy of Sciences, 1349, 64–82.CrossRefGoogle Scholar
  28. Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703):1940–3.Google Scholar
  29. Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical applications. Nature Reviews. Neuroscience, 12, 652–669.CrossRefGoogle Scholar
  30. Halldin, C., Farde, L., Hogberg, T., Mohell, N., Hall, H., Suhara, T., Karlsson, P., et al. (1995). Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. Journal of Nuclear Medicine, 36, 1275–1281.Google Scholar
  31. Imperiale, F., Agosta, F., Canu, E., Markovic, V., Inuggi, A., Jecmenica-Lukic, M., Tomic, A., Copetti, M., Basaia, S., Kostic, V. S., & Filippi, M. (2018). Brain structural and functional signatures of impulsive-compulsive behaviours in Parkinson’s disease. Molecular Psychiatry, 23, 459–466.CrossRefGoogle Scholar
  32. Joutsa, J., Martikainen, K., Nimela, S., Johansson, J., Forsback, S., Rinne, J. O., Kaasinen, V. (2012). Increased medial orbitofrontal [18F]fluorodopa uptake in Parkinsonian impulse control disorders. Movement Disorders, 27(6):778–82.Google Scholar
  33. Kelley, A., & Berridge, K. (2002). The neuroscience of natural rewards: relevance to addictive drugs. The Journal of Neuroscience, 22, 3306–3311.CrossRefGoogle Scholar
  34. King, A., McNamara, P., Angstadt, M., & Phan, K. L. (2010). Neural substrates of alcohol-induces smoking urge in heavy drinking non-daily smokers. Neuropsychopharmacology, 35, 692–701.CrossRefGoogle Scholar
  35. Lee, J. Y., Seo, S. H., Kim, Y. K., Hb, Y., Kim, Y. E., Song, I. C., Lee, J. S., et al. (2014). Extrastriatal dopaminergic changes in Parkinson’s disease patients with impulse control disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 85, 23–30.CrossRefGoogle Scholar
  36. Liang, X., He, Y., Salmeron, B. J., Gu, H., Stein, E. A., & Yang, Y. (2015). Interactions between the salience and default-mode networks are disrupted in cocaine addiction. The Journal of Neuroscience, 35, 8081–8090.CrossRefGoogle Scholar
  37. Limbrick-Oldfield, E. H., Mick, I., Cocks, R. E., McGonigle, J., Sharman, S. P., Goldstone, A. P., & Stokes, P. R. A. (2017). Neural substrates of cue reactivity and craving in gambling disorder. Translational Psychiatry, 7, 992.CrossRefGoogle Scholar
  38. Linden, D. (2016). Neuoimaging and neurophysiologiy in psychiatry. Oxford: Oxford University Press.Google Scholar
  39. Loane, C., Wu, K., O’Sullivan, S. S., Lawrence, A. D., Woodhead, Z., Lees, A. J., Piccini, P., et al. (2015). Psychogenic and neural visual-cue response in PD dopamine dysregulation syndrome. Parkinsonism & Related Disorders, 21, 1336–1341.CrossRefGoogle Scholar
  40. Makris, N., Gasic, G., Kennedy, D. N., Hodge, S. N., Kaiser, J. R., Lee, M. J., Kim, B. W., et al. (2008). Cortical thickness abnormalities in cocaine addiction – a reflection of both drug use and a pre-existing disposition to drug abuse? Neuron, 60, 174–188.CrossRefGoogle Scholar
  41. Markovic, V., Agosta, F., Canu, E., Inuggi, A., Petrovic, I., Stankovic, I., Imperiale, F., Stojkovic, T., Kostic, V. S., & Filippi, M. (2017). Role of habenula and amygdala dysfunction in Parkinson disease patients with punding. Neurology, 88, 2207–2215.CrossRefGoogle Scholar
  42. O'Sullivan, S. S., Wu, K., Politis, M., Lawrence, A. D., Evans, A. H., Bose, S. K., Djamshidian, A., Lees, A. J., & Piccini, P. (2011). Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain, 134, 969–978.CrossRefGoogle Scholar
  43. Payer, D. E., Guttman, M., Kish, S. J., Tong, J., Strafella, A., Zack, M., Adams, J. R., Rusjan, P., Houle, S., Furukawa, Y., Wilson, A. A., & Boileau, I. (2015). [11C]-(+)-PHNO PET imaging of dopamine D(2/3) receptors in Parkinson’s disease with impulse control disorders. Movement Disorders, 30, 160–166.CrossRefGoogle Scholar
  44. Pellicano, C., Niccolini, F., Wu, K., O’Sullivan, S. S., Lawrence, A. D., Lees, A. J., Piccini, P., & Politis, M. (2015). Morphometric changes in the reward system of Parkinson’s disease patients with impulse control disorders. Journal of Neurology, 262, 2653–2661.CrossRefGoogle Scholar
  45. Petersen, K., Van Wouwe, N., Stark, A., Lin, Y. C., Kang, H., Trujillo-Diaz, P., Kessler, R., et al. (2018). Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson’s disease. Human Brain Mapping, 39, 509–521.CrossRefGoogle Scholar
  46. Politis, M., Loane, C., Wu, K., O’Sullivan, S. S., Woodhead, Z., Kiferle, L., Lawrence, A. D., Lees, A. J., & Piccini, P. (2013). Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain, 136, 400–411.CrossRefGoogle Scholar
  47. Potenza, M. (2008). The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 3181–3189.CrossRefGoogle Scholar
  48. Premi, E., Pilotto, A., Garibotto, V., Bigni, B., Turrone, R., Alberici, A., Cottini, E., et al. (2016). Impulse control disorder in PD: a lateralized monoaminergic frontostriatal disconnection syndrome?. Parkinsonism & Related Disorders, 30, 62–66.Google Scholar
  49. Qiu, Y., Su, H. H., Lv, X. F., Ma, X. F., Jiang, G. H., & Tian, J. Z. (2017). Intrinsic brain network abnormalities in codeine-containing cough syrup-dependent male individuals revealed in resting state fMRI. Journal of Magnetic Resonance Imaging, 45, 177–186.CrossRefGoogle Scholar
  50. Rao, H., Mamikonyan, E., Detre, J. A., Siderowf, A. D., Stern, M. B., Potenza, M. N., Weintraub, D., et al. (2010). Decreased ventral striatal activity with impulse control disorders in Parkinson's disease. Movement Disorders, 25, 1660–1669.CrossRefGoogle Scholar
  51. Ray, N. J., Miyasaki, J. M., Zurowski, M., Ko, J. H., Cho, S. S., Pellecchia, G., Antonelli, F., Houle, S., Lang, A. E., & Strafella, A. P. (2012). Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson's patients with medication-induced pathological gambling: A [11C] FLB-457 and PET study. Neurobiology of Disease, 48, 519–525.CrossRefGoogle Scholar
  52. Ricciardi, L., Lambert, C., De Micco, R., Morgante, F., Edwards, M. (2017). Can we predict development of impulsive-compulsive behaviours in Parkinson’s disease? Journal of Neurology, Neurosurgery, and Psychiatry, 89(5):476–481.Google Scholar
  53. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18, 247–291.CrossRefGoogle Scholar
  54. Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1507), 3137–3146.Google Scholar
  55. Ruitenberg, M., Wu, T., Averbeck, B., Chou, K., Koppelmans, V., & Seidler, R. (2018). Impulsivity in Parkinson’s disease is associated with alterations in affective and sensorimotor striatal networks. Frontiers in Neurology, 9, 279.CrossRefGoogle Scholar
  56. Schadt, J. P., Anton, R. F., & Myrick, H. (2013). Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addiction Biology, 18, 121–133.CrossRefGoogle Scholar
  57. Smith, K. M., Xie, S. X., & Weintraub, D. (2016). Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. Journal of Neurology, Neurosurgery & Psychiatry, 87(8), 864.CrossRefGoogle Scholar
  58. Steeves, T. D., Miyasaki, J., Zurowski, M., Lang, A. E., Pellecchia, G., Van Eimeren, T., Rusjan, P., et al. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain, 132, 1376–1385.CrossRefGoogle Scholar
  59. Tessitore, A., Santangelo, G., De Micco, R., Vitale, C., Giodarno, A., Raimo, S., Corbo, D., et al. (2016). Cortical thickness changes in patients with Parkinson’s disease and impulse control disorders. Parkinsonism & Related Disorders, 24, 119–125.CrossRefGoogle Scholar
  60. Tessitore, A., Santangelo, G., De Micco, R., Giordano, A., Raimo, S., Amboni, M., & Esposito, F. (2017a). Resting-state brain networks in patients with Parkinson’s disease and impulse control disorders. Cortex, 94, 63–72.CrossRefGoogle Scholar
  61. Tessitore, A., De Micco, R., Giordano, A., di Nardo, F., Caiazzo, G., Siciliano, M., & De Stefano, M. (2017b). Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson’s disease. Movement Disorders, 32, 1710–1719.CrossRefGoogle Scholar
  62. Thanos, P. K., Volkow, N. D., Freimuth, P., Umegaki, H., Ikari, H., Roth, G., Ingram, D. K., & Hitzemann, R. (2001). Overexpression of dopamine D2 receptors reduces alcohol self-administration. Journal of Neurochemistry, 78, 1094–1103.CrossRefGoogle Scholar
  63. van Eimeren, T., Pellecchia, G., Cilia, R., Ballanger, B., Steeves, T. D., Houle, S., & Miyasaki, J. M. (2010). Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology, 75, 1711–1716.CrossRefGoogle Scholar
  64. Verger, A., Klesse, E., Chawki, M. B., et al. (2018). Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Human Brain Mapping, 00, 1–9.Google Scholar
  65. Volkow, N. D., Fowler, J. S., Wang, G. J., Hitzemann, R., Logan, J., Schlyer, D. J., Dewey, S. L., & Wolf, A. P. (1993). Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 14, 169–177.CrossRefGoogle Scholar
  66. Volkow, N., Wang, G. J., Fowler, J. S., Logan, L., Gatley, S. J., Gifford, A., Hitzemann, R., et al. (1999). Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. The American Journal of Psychiatry, 156, 1440–1443.CrossRefGoogle Scholar
  67. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Ding, Y. S., Sedler, M., Logan, J., Franceschi, D., Gatley, J., Hitzemann, R., Gifford, A., Wong, C., & Pappas, N. (2001). Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. The American Journal of Psychiatry, 158, 2015–2021.CrossRefGoogle Scholar
  68. Volkow, N. D., Wang, G. J., Fowler, J. S., Thanos, P. P., Logan, J., Gatley, S. J., Gifford, A., Ding, Y. S., Wong, C., & Pappas, N. (2002). Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse, 46, 79–82.CrossRefGoogle Scholar
  69. Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Childress, A. R., Jayne, M., Ma, Y., & Wong, C. (2006). Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. The Journal of Neuroscience, 26, 6583–6588.CrossRefGoogle Scholar
  70. Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Jayne, M., Ma, Y., Pradhan, K., & Wong, C. (2007). Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. The Journal of Neuroscience, 27, 12700–12706.CrossRefGoogle Scholar
  71. Volkow, N. D., Wang, G. J., Fowler, J. S., & Telang, F. (2008). Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 3191–3200.CrossRefGoogle Scholar
  72. Volkow, N. D., Wang, G. J., Fowler, J. S., & Tomasi, D. (2012). Addiction circuitry in the human brain. Annual Review of Pharmacology and Toxicology, 52, 321–336.CrossRefGoogle Scholar
  73. Vollstadt-Klein, S., Wichert, S., Rabinstein, J., Buhler, M., Klein, O., Ende, G., Hermann, D., et al. (2010). Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction, 105, 1741–1749.CrossRefGoogle Scholar
  74. Voon, V., Pessiglione, M., Brezing, C., Gallea, C., Fernandez, H. H., Dolan, R. J., & Hallet, M. (2010). Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron, 65, 135–142.CrossRefGoogle Scholar
  75. Voon, V., Gao, J., Brezing, C., Symmonds, M., Ekanayake, V., Fernandez, H., Dolan, R. J., & Hallett, M. (2011). Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain, 134(5), 1438–1446.CrossRefGoogle Scholar
  76. Voon, V., Rizos, A., Chakravartty, R., Mulholland, N., Robinson, S., Howell, N. A., Harrison, N., Vivian, G., & Ray Chaudhuri, K. (2014). Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels. Journal of Neurology, Neurosurgery, and Psychiatry, 85, 148–152.CrossRefGoogle Scholar
  77. Vriend, C., Nordbeck, A. H., Booij, J., van der Werf, Y. D., Pattij, T., Voorn, P., Rajimakers, P., et al. (2014). Reduced dopamine transporter binding predates impulse control disorders in Parkinson’s disease. Movement Disorders, 29, 904–911.CrossRefGoogle Scholar
  78. Weintraub, D., Koester, J., Potenza, M. N., Siderowf, A. D., Stacy, M., Voon, V., Whetteckey, J., Wunderlich, G. R., & Lang, A. E. (2010). Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Archives of Neurology, 67, 589–595.CrossRefGoogle Scholar
  79. Wilson, S. J., Creswell, K. G., Sayette, M. A., & Fiez, J. A. (2012). Ambivalence about smoking and cue-elicited neural acitivity in quitting-motivated smokers faced with an opportunity to smoke. Addictive Behaviors, 38, 1541–1549.CrossRefGoogle Scholar
  80. Wu, K., Politis, M., O’Sullivan, S. S., Lawrence, A. D., Warsi, S., Bose, S., Lees, A. J., & Piccini, P. (2015). Single versus multiple impulse control disorders in Parkinson’s disease: an 11C-raclopride positron emission tomography study of reward cue-evoked striatal dopamine release. Journal of Neurology, 262, 1504–1514.CrossRefGoogle Scholar
  81. Yalachkov, Y., Kaiser, J., & Naumer, M. J. (2012). Functional neuroimaging studies in addiction: multisensory drug stimuli and neural cue reactivity. Neuroscience and Biobehavioral Reviews, 36, 825–835.CrossRefGoogle Scholar
  82. Yoder, K., Kareken, D., & Morris, E. (2008). What were they thinking? Cognitive states may influence [(11)C]Raclopride binding potential in the striatum. Neuroscience Letters, 430, 38–42.CrossRefGoogle Scholar
  83. Yoo, H. B., Lee, J. Y., Lee, J. S., Kang, H., Kim, Y. K., Song, I. C., Lee, D. S., & Jeon, B. S. (2015a). Whole-brain diffusion-tensor changes in parkinsonian patients with impulse control disorders. Journal of Clinical Neurology (Seoul, Korea), 11, 42–47.CrossRefGoogle Scholar
  84. Yoo, H. S., Yun, H. J., Chung, S. J., Sunwoo, M. K., Lee, J. M., Sohn, Y. H., & Lee, P. H. (2015b). Patterns of neuropsychological profile and cortical thinning in Parkinson’s disease with punding. PLoS One, 10(7), e0134468.CrossRefGoogle Scholar
  85. Zadeh, M., Ashraf-Ganjouei, A., Sherbaf, F., Haghshomar, M., & Aarabi, M. (2018). White matter tract alterations in drug-naïve Parkinson’s disease patients with impulse control disorders. Frontiers in Neurology, 9, 163.Google Scholar
  86. Zhang, S., Dissanayaka, N., Dawson, A., O’Sullivan, J., Mosley, P., Hall, W., & Carter, A. (2016). Management of impulse control disorders in Parkinson’s disease. International Psychogeriatrics, 28, 1597–1614.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UQ Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
  2. 2.School of PsychologyThe University of QueenslandBrisbaneAustralia
  3. 3.School of Psychological Sciences and Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityClaytonAustralia
  4. 4.Department of NeurologyRoyal Brisbane & Woman’s HospitalBrisbaneAustralia

Personalised recommendations