Advertisement

Neonatal brain abnormalities and brain volumes associated with goal setting outcomes in very preterm 13-year-olds

  • Kristina M. Haebich
  • Catherine Willmott
  • Shannon E. Scratch
  • Leona Pascoe
  • Katherine J. Lee
  • Megan M. Spencer-Smith
  • Jeanie L. Y. Cheong
  • Terrie E. Inder
  • Lex W. Doyle
  • Deanne K. Thompson
  • Peter J. AndersonEmail author
ORIGINAL RESEARCH
  • 56 Downloads

Abstract

Executive dysfunction including impaired goal setting (i.e., planning, organization skills, strategic reasoning) is documented in children born very preterm (VP; <30 weeks/<1250 g), however the neurological basis for this impairment is unknown. This study sought to examine the relationship between brain abnormalities and brain volumes on neonatal magnetic resonance imaging (MRI) and goal setting abilities of VP 13-year-olds. Participants were 159 children born VP in a prospective longitudinal study. Qualitative brain abnormality scores and quantitative brain volumes were derived from neonatal MRI brain scans (40 weeks’ gestational age ± 2 weeks). Goal setting at 13 years was assessed using the Delis-Kaplan Executive Function Systems Tower Test, the Rey Complex Figure, and the Behavioural Assessment of the Dysexecutive System for Children Zoo Map and Six Part Test. A composite score was generated denoting overall performance on these goal setting measures. Separate regression models examined the association of neonatal brain abnormality scores and brain volumes with goal setting performance. There was evidence that higher neonatal white matter, deep grey matter and cerebellum abnormality scores were associated with poorer goal setting scores at 13 years. There was also evidence of positive associations between total brain volume, cerebellum, thalamic and cortical grey matter volumes and goal setting performance. Evidence for the associations largely persisted after controlling for potential confounders. Neonatal brain abnormality and brain volumes are associated with goal setting outcome in VP 13-year-olds. Used in conjunction with other clinical indicators, neonatal MRI may help to identify VP children at risk for later executive dysfunction.

Keywords

Premature birth Brain injury Executive function Magnetic resonance imaging (MRI) 

Notes

Acknowledgments

We would like to acknowledge the input of the entire VIBeS research team, and all the families who participated in this study.

Funding

This study was funded by Australia’s National Health & Medical Research Council (Centre for Research Excellence 1060733 to L.W. Doyle, P.J. Anderson, and D. K. Thompson; Project Grant 1066555 to P.J. Anderson, L.W. Doyle, M. Spencer-Smith, D. K. Thompson; Senior Research Fellowship 1081288 to P.J. Anderson; Career Development Fellowship 1085754 to D. K. Thompson), the Murdoch Children’s Research Institute, The Royal Children’s Hospital, The Royal Children’s Hospital Foundation, Department of Paediatrics, The University of Melbourne and the Victorian Government’s Operational Infrastructure Support Program.

Compliance with ethical standards

Conflict of interest

Author Kristina M. Haebich declares that she has no conflict of interest. Author Catherine Willmott declares that she has no conflict of interest. Author Shannon E. Scratch declares that she has no conflict of interest. Author Leona Pascoe declares that she has no conflict of interest. Author Katherine J. Lee declares that she has no conflict of interest. Author Megan M. Spencer-Smith declares that she has no conflict of interest. Author Jeanie L.Y. Cheong declares that she has no conflict of interest. Author Terrie E. Inder declares that she has no conflict of interest. Author Lex W. Doyle declares that he has no conflict of interest. Author Deanne K. Thompson declares that she has no conflict of interest. Author Peter J. Anderson declares that he has no conflict of interest. This manuscript has never been published elsewhere.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2019_39_MOESM1_ESM.doc (41 kb)
ESM 1 (DOC 40 kb)

References

  1. Aarnoudse-Moens, C. S. H., Weisglas-Kuperus, N., Duivenvoorden, H. J., van Goudoever, J. B., & Oosterlaan, J. (2013). Executive function and IQ predict mathematical and attention problems in very preterm children. PLoS One, 8(2), e55994.  https://doi.org/10.1371/journal.pone.0055994.Google Scholar
  2. Adams-Chapman, I. (2009). Insults to the developing brain and impact on neurodevelopmental outcome. Journal of Communication Disorders, 42(4), 256–262.  https://doi.org/10.1016/j.jcomdis.2009.03.010.Google Scholar
  3. Alduncin, N., Huffman, L. C., Feldman, H. M., & Loe, I. M. (2014). Executive function is associated with social competence in preschool-aged children born preterm or full term. Early Human Development, 90(6), 299–306.  https://doi.org/10.1016/j.earlhumdev.2014.02.011.Google Scholar
  4. Anderson, P. J. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8(2), 71–82.  https://doi.org/10.1076/chin.8.2.71.8724.Google Scholar
  5. Anderson, P. J., & Doyle, L. W. (2003). Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. The Journal of the American Medical Association, 289(24), 3264–3272.  https://doi.org/10.1001/jama.289.24.3264.Google Scholar
  6. Anderson, P. J., Anderson, V. A., & Lajoie, G. (1996). The tower of London test: validation and standardization for pediatric populatons. The Clinical Neuropsychologist, 10(1), 54–65.  https://doi.org/10.1080/13854049608406663.Google Scholar
  7. Anderson, P. J., Anderson, V. A., & Garth, J. (2001). Assessment and development of organizational ability: the Rey complex figure organizational strategy score (RCF-OSS). The Clinical Neuropsychologist, 15(1), 81–94.  https://doi.org/10.1076/clin.15.1.81.1905.Google Scholar
  8. Anderson, P. J., Doyle, L. W., & for the Victorian Infant Collaborative Study Group. (2004). Executive functioning in school-aged children who were born very preterm or with extremely low birth weight in the 1990s. Pediatrics, 114(1), 50–57.Google Scholar
  9. Anderson, V. A., Anderson, P. J., Jacobs, R., & Spencer-Smith, M. M. (2008). Development and assessment of executive function: From preschool to adolescence. In V. Anderson, R. Jacobs, & P. J. Anderson (Eds.), Executive functions and the frontal lobes: A lifespan perspective. New York: Psychology Press.Google Scholar
  10. Anderson, P. J., De Luca, C. R., Hutchinson, E. A., Spencer-Smith, M. M., Roberts, G., & Doyle, L. W. (2011). Attention problems in a representative sample of extremely preterm/extremely low birth weight children. Developmental Neuropsychology, 36(1), 57–73.  https://doi.org/10.1080/87565641.2011.540538.Google Scholar
  11. Anderson, P. J., Cheong, J. L. Y., & Thompson, D. K. (2015). The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Seminars in Perinatology, 39(2), 147–158.  https://doi.org/10.1053/j.semperi.2015.01.008.Google Scholar
  12. Anderson, P. J., Treyvaud, K., Neil, J. J., Cheong, J. L. Y., Hunt, R. W., Thompson, D. K., et al. (2017). Associations of newborn brain magnetic resonance imaging with long-term neurodevelopmental impairments in very preterm children. The Journal of Pediatrics, 187, 58–65.e51.  https://doi.org/10.1016/j.jpeds.2017.04.059.Google Scholar
  13. Baker, S. C., Rogers, R. D., Owen, A. M., Frith, C. D., Dolan, R. J., Frackowiak, R. S. J., & Robbins, T. W. (1996). Neural systems engaged by planning: a PET study of the tower of London task. Neuropsychologia, 34(6), 515–526.  https://doi.org/10.1016/0028-3932(95)00133-6.Google Scholar
  14. Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., Dant, C. C., & Reiss, A. L. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15(12), 1848–1854.  https://doi.org/10.1093/cercor/bhi062.Google Scholar
  15. Beare, R. J., Chen, J., Kelly, C. E., Alexopoulos, D., Smyser, C. D., Rogers, C. E., Loh, W. Y., Matthews, L. G., Cheong, J. L. Y., Spittle, A. J., Anderson, P. J., Doyle, L. W., Inder, T. E., Seal, M. L., & Thompson, D. K. (2016). Neonatal brain tissue classification with morphological adaptation and unified segmentation. Frontiers in Neuroinformatics, 10, 12.  https://doi.org/10.3389/fninf.2016.00012.Google Scholar
  16. Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 1165–1188.  https://doi.org/10.1214/aos/1013699998.
  17. Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21(4), 327–336.  https://doi.org/10.1016/j.lindif.2011.01.007.Google Scholar
  18. Bohm, B., Smedler, A. C., & Forssberg, H. (2004). Impulse control, working memory and other executive functions in preterm children when starting school. Acta Paediatrica, 93(10), 1363–1371.  https://doi.org/10.1111/j.1651-2227.2004.tb02938.x.Google Scholar
  19. Breslau, N., & Chilcoat, H. D. (2000). Psychiatric sequelae of low birth weight at 11 years of age. Biological Psychiatry, 47(11), 1005–1011.  https://doi.org/10.1016/S0006-3223(99)00312-1.Google Scholar
  20. Burnett, A. C., Scratch, S. E., & Anderson, P. J. (2013). Executive function outcome in preterm adolescents. Early Human Development, 89(4), 215–220.  https://doi.org/10.1016/j.earlhumdev.2013.01.013.Google Scholar
  21. Caldu, X., Narberhaus, A., Junque, C., Gimenez, M., Vendrell, P., Bargallo, N., et al. (2006). Corpus callosum size and neuropsychologic impairment in adolescents who were born preterm. Journal of Child Neurology, 21(5), 406–410.  https://doi.org/10.1177/08830738060210050801.Google Scholar
  22. Cheong, J. L. Y., Thompson, D. K., Spittle, A. J., Potter, C. R., Walsh, J. M., Burnett, A. C., et al. (2016). Brain volumes at term-equivalent age are associated with 2-year neurodevelopment in moderate and late preterm children. The Journal of Pediatrics, 174, 91–97.e91.  https://doi.org/10.1016/j.jpeds.2016.04.002.Google Scholar
  23. Clark, C. A. C., & Woodward, L. J. (2010). Neonatal cerebral abnormalities and later verbal and visuospatial working memory abilities of children born very preterm. Developmental Neuropsychology, 35(6), 622–642.  https://doi.org/10.1080/87565641.2010.508669.Google Scholar
  24. Cole, T. J., Freeman, J. V., & Preece, M. A. (1998). British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Statistics in Medicine, 17(4), 407–429.  https://doi.org/10.1002/(SICI)1097-0258(19980228)17:4<407::AID-SIM742>3.0.CO;2-L.Google Scholar
  25. Cooke, R. W. (2010). Structural magnetic resonance imaging. In C. Nosarti, R. Murray, & M. Hack (Eds.), Neurodevelopmental outcomes of preterm birth: From childhood to adult life (pp. 54–67). New York: Cambridge University Press.Google Scholar
  26. Counsell, S. J., & Boardman, J. P. (2005). Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging. Seminars in Fetal and Neonatal Medicine, 10(5), 403–410.  https://doi.org/10.1016/j.siny.2005.05.003.Google Scholar
  27. Curtis, W. J., Lindeke, L. L., Georgieff, M. K., & Nelson, C. A. (2002). Neurobehavioural functioning in neonatal intensive care unit graduates in late childhood and early adolescence. Brain, 125(7), 1646–1659.  https://doi.org/10.1093/brain/awf159.Google Scholar
  28. Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system (D-KEFS). San Antonio: The Psychological Corporation.Google Scholar
  29. Duvall, S. W., Erickson, S. J., MacLean, P., & Lowe, J. R. (2014). Perinatal medical variables predict executive function within a sample of preschoolers born very low birth weight. Journal of Child Neurology, 30(6), 735–740.  https://doi.org/10.1177/0883073814542945.Google Scholar
  30. Edgin, J. O., Inder, T. E., Anderson, P. J., Hood, K. M., Clark, C. A. C., & Woodward, L. J. (2008). Executive functioning in preschool children born very preterm: relationship with early white matter pathology. Journal of the International Neuropsychological Society, 14(1), 90–101.  https://doi.org/10.1017/S1355617708080053.Google Scholar
  31. Edwards, A. D., Redshaw, M. E., Kennea, N., Rivero-Arias, O., Gonzales-Cinca, N., Nongena, P., et al. (2017). Effect of MRI on preterm infants and their families: a randomised trial with nested diagnostic and economic evaluation. Archives of Disease in Childhood - Fetal and Neonatal Edition, 103, F1–F7.  https://doi.org/10.1136/archdischild-2017-313102.Google Scholar
  32. Elliott, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65(1), 49–59.  https://doi.org/10.1093/bmb/65.1.49.Google Scholar
  33. Emslie, H. F., Wilson, C., Burden, V., Nimmo-Smith, I., & Wilson, B. A. (2003). Behavioural assessment of the Dysexecutive syndrome in children (BADS-C). London: Harcourt Assessment/The Psychological Corporation.Google Scholar
  34. Haebich, K. M., Willmott, C., Ellis, R., Burnett, A. C., Scratch, S. E., Pascoe, L., et al. (2018). Goal setting deficits at 13 years in very preterm born children. Journal of the International Neuropsychological Society, 23(4), 372–381.  https://doi.org/10.1017/S1355617717001138.
  35. Harvey, J. M., O'Callaghan, M. J., & Mohay, H. (1999). Executive function of children with extremely low birthweight: a case control study. Developmental Medicine and Child Neurology, 41(05), 292–297.  https://doi.org/10.1017/s0012162299000663.Google Scholar
  36. Huppi, P. S., Warfield, S., Kikinis, R., Barnes, P. D., Zientara, G. P., Jolesz, F. A., et al. (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Annals of Neurology, 43(2), 224–235.  https://doi.org/10.1002/ana.410430213.Google Scholar
  37. Hutchinson, E. A., De Luca, C. R., Doyle, L. W., Roberts, G., & Anderson, P. J. (2013). School-age outcomes of extremely preterm or extremely low birth weight children. Pediatrics, 131(4), e1053–e1061.  https://doi.org/10.1542/peds.2012-2311.Google Scholar
  38. Inder, T. E., Huppi, P. S., Warfield, S., Kikinis, R., Zientara, G. P., Barnes, P. D., Jolesz, F., & Volpe, J. J. (1999). Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Annals of Neurology, 46(5), 755–760.  https://doi.org/10.1002/1531-8249(199911)46:5<755::AID-ANA11>3.0.CO;2-0.Google Scholar
  39. Inder, T. E., Wells, S. J., Mogridge, N. B., Spencer, C., & Volpe, J. J. (2003). Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. The Journal of Pediatrics, 143(2), 171–179.  https://doi.org/10.1067/S0022-3476(03)00357-3.Google Scholar
  40. Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17(4), 951–961.  https://doi.org/10.1093/cercor/bhl006.Google Scholar
  41. Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman brief intelligence test, second edition (KBIT-2). Bloomington: Pearson, Inc..Google Scholar
  42. Khwaja, O., & Volpe, J. J. (2008). Pathogenesis of cerebral white matter injury of prematurity. Archives of Disease in Childhood. Fetal and Neonatal Edition, 93(2), F153–F161.  https://doi.org/10.1136/adc.2006.108837.Google Scholar
  43. Kidokoro, H., Neil, J. J., & Inder, T. E. (2013). New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. American Journal of Neuroradiology, 34(11), 2208–2214.  https://doi.org/10.3174/ajnr.A3521.Google Scholar
  44. Kirkwood, B. R., & Sterne, J. A. C. (2003). Essential medical statistics (2nd ed.). Massachusetts: Blackwell Publishing.Google Scholar
  45. Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19(10), 2485–2497.  https://doi.org/10.1093/cercor/bhp135.Google Scholar
  46. Leviton, A., & Gressens, P. (2007). Neuronal damage accompanies perinatal white-matter damage. Trends in Neurosciences, 30(9), 473–478.  https://doi.org/10.1016/j.tins.2007.05.009.Google Scholar
  47. Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York: Oxford University Press.Google Scholar
  48. Limperopoulos, C., Bassan, H., Gauvreau, K., Robertson, R. L., Sullivan, N. R., Benson, C. B., Avery, L., Stewart, J., MD, J. S. S., Ringer, S. A., Volpe, J. J., & duPlessis, A. J. (2007). Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 120(3), 584–593.  https://doi.org/10.1542/peds.2007-1041.Google Scholar
  49. Loe, I. M., Chatav, M., & Alduncin, N. (2015). Complementary assessments of executive function in preterm and full-term preschoolers. Child Neuropsychology, 21(3), 331–353.  https://doi.org/10.1080/09297049.2014.906568.Google Scholar
  50. Loh, W. Y., Connelly, A., Cheong, J. L. Y., Spittle, A. J., Chen, J., Adamson, C., et al. (2016). A new MRI-based pediatric subcortical segmentation technique (PSST). Neuroinformatics, 14(1), 69–81.  https://doi.org/10.1007/s12021-015-9279-0.Google Scholar
  51. Loh, W. Y., Anderson, P. J., Cheong, J. L. Y., Spittle, A. J., Chen, J., Lee, K. J., et al. (2017). Neonatal basal ganglia and thalamic volumes: very preterm birth and 7-year neurodevelopmental outcomes. Pediatric Research, 82(6), 970–978.  https://doi.org/10.1038/pr.2017.161.Google Scholar
  52. Luu, T. M., Ment, L., Allan, W., Schneider, K., & Vohr, B. R. (2011). Executive and memory function in adolescents born very preterm. Pediatrics, 127(3), e639–e646.  https://doi.org/10.1542/peds.2010-1421.Google Scholar
  53. Marlow, N., Hennessy, E. M., Bracewell, M. A., & Wolke, D. (2007). Motor and executive function at 6 years of age after extremely preterm birth. Pediatrics, 120(4), 793–804.  https://doi.org/10.1542/peds.2007-0440.Google Scholar
  54. Miller, S. P., Ferriero, D. M., Leonard, C., Piecuch, R., Glidden, D. V., Partridge, J. C., Perez, M., Mukherjee, P., Vigneron, D. B., & Barkovich, A. J. (2005). Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. The Journal of Pediatrics, 147(5), 609–616.  https://doi.org/10.1016/j.jpeds.2005.06.033.Google Scholar
  55. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.  https://doi.org/10.1002/ana.20742.Google Scholar
  56. Morris, R. G., Ahmed, S., Syed, G. M., & Toone, B. K. (1993). Neural correlates of planning ability: Frontal lobe activation during the tower of London test. Neuropsychologia, 31(12), 1367–1378.  https://doi.org/10.1016/0028-3932(93)90104-8.Google Scholar
  57. Murray, A. L., Scratch, S. E., Thompson, D. K., Inder, T. E., Doyle, L. W., Anderson, J. F., & Anderson, P. J. (2014). Neonatal brain pathology predicts adverse attention and processing speed outcomes in very preterm and/or very low birth weight children. Neuropsychology, 28(4), 552–562.  https://doi.org/10.1037/neu0000071.Google Scholar
  58. Newman, S. D., Carpenter, P. A., Varma, S., & Just, M. A. (2003). Frontal and parietal participation in problem solving in the tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia, 41(12), 1668–1682.  https://doi.org/10.1016/S0028-3932(03)00091-5.Google Scholar
  59. Nongena, P., Ederies, A., Azzopardi, D. V., & Edwards, A. D. (2010). Confidence in the prediction of neurodevelopmental outcome by cranial ultrasound and MRI in preterm infants. Archives of Disease in Childhood - Fetal and Neonatal Edition, 95(6), F388–F390.  https://doi.org/10.1136/adc.2009.168997.Google Scholar
  60. Nosarti, C., Rushe, T. M., Woodruff, P. W. R., Stewart, A. L., Rifkin, L., & Murray, R. M. (2004). Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain, 127(9), 2080–2089.  https://doi.org/10.1093/brain/awh230.Google Scholar
  61. Omizzolo, C., Scratch, S. E., Stargatt, R., Kidokoro, H., Thompson, D. K., Lee, K. J., Cheong, J., Neil, J., Inder, T. E., Doyle, L. W., & Anderson, P. J. (2013). Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm. Memory, 22(6), 605–615.  https://doi.org/10.1080/09658211.2013.809765.Google Scholar
  62. Ortinau, C., & Neil, J. (2014). The neuroanatomy of prematurity: normal brain development and the impact of preterm birth. Clinical Anatomy, 28(2), 168–183.  https://doi.org/10.1002/ca.22430.Google Scholar
  63. Osterrieth, P. (1944). Le test de copie d'une figure complexe contribution. Archives de Psychologie, 30, 206–356.Google Scholar
  64. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. T. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.  https://doi.org/10.1002/hbm.20131.Google Scholar
  65. Peterson, B. S., Vohr, B., Staib, L. H., et al. (2000). Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA, 284(15), 1939–1947.  https://doi.org/10.1001/jama.284.15.1939.Google Scholar
  66. Peterson, B. S., Anderson, A. W., Ehrenkranz, R., Staib, L. H., Tageldin, M., Colson, E., Gore, J. C., Duncan, C. C., Makuch, R., & Ment, L. R. (2003). Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics, 111(5), 939–948.  https://doi.org/10.1542/peds.111.5.939.Google Scholar
  67. Rademaker, K. J., Lam, J. N., Van Haastert, I. C., Uiterwaal, C. S., Lieftink, A. F., Groenendaal, F., et al. (2004). Larger corpus callosum size with better motor performance in prematurely born children. Seminars in Perinatology, 28(4), 279–287.  https://doi.org/10.1053/j.semperi.2004.08.005.Google Scholar
  68. Roberts, G., Howard, K., Spittle, A. J., Brown, N. C., Anderson, P. J., & Doyle, L. W. (2008). Rates of early intervention services in very preterm children with developmental disabilities at age 2 years. Journal of Paediatrics and Child Health, 44(5), 276–280.  https://doi.org/10.1111/j.1440-1754.2007.01251.x.Google Scholar
  69. Rowe, J. B., Owen, A. M., Johnsrude, I. S., & Passingham, R. E. (2001). Imaging the mental components of a planning task. Neuropsychologia, 39(3), 315–327.  https://doi.org/10.1016/s0028-3932(00)00109-3.Google Scholar
  70. Schmahmann, J. D. (1996). From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4(3), 174–198.  https://doi.org/10.1002/(sici)1097-0193(1996)4:3<174::aid-hbm3>3.3.co;2-w.Google Scholar
  71. Schoenberg, M. R., Marsh, P. J., & Lerner, A. J. (2011). Neuroanatomy primer: Structure and function of the human nervous system. In M. R. Schoenberg & J. G. Scott (Eds.), The little black book of neuropsychology. New York: Springer.Google Scholar
  72. Scott, M., Taylor, G. H., Fristad, M. A., Klein, N., Espy, K. A., Minich, N., & Hack, M. (2012). Behavior disorders in extremely preterm/extremely low birth weight children in kindergarten. Journal of Developmental & Behavioral Pediatrics, 33(3), 202–213.  https://doi.org/10.1097/DBP.0b013e3182475287.Google Scholar
  73. Shah, D. K., Anderson, P. J., Carlin, J. B., Pavlovic, M., Howard, K., Thompson, D. K., Warfield, S. K., & Inder, T. E. (2006). Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age. Pediatric Research, 60(1), 97–102.  https://doi.org/10.1203/01.pdr.0000220324.27597.f0.Google Scholar
  74. Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327–348.  https://doi.org/10.1007/s11065-010-9148-4.Google Scholar
  75. Taylor, G. H., Hack, M., & Klein, N. (1998). Attention deficits in children with <750 gm birth weight. Child Neuropsychology, 4(1), 21–34.  https://doi.org/10.1076/chin.4.1.21.3188.Google Scholar
  76. Thompson, D. K., Wood, S. J., Doyle, L. W., Warfield, S. K., Lodygensky, G. A., Anderson, P. J., Egan, G. F., & Inder, T. E. (2008). Neonate hippocampal volumes: prematurity, perinatal predictors, and 2-year outcome. Annals of Neurology, 63(5), 642–651.  https://doi.org/10.1002/ana.21367.Google Scholar
  77. Thompson, D. K., Inder, T. E., Faggian, N., Johnston, L., Warfield, S. K., Anderson, P. J., Doyle, L. W., & Egan, G. F. (2011). Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. NeuroImage, 55(2), 479–490.  https://doi.org/10.1016/j.neuroimage.2010.12.025.Google Scholar
  78. Thompson, D. K., Ahmadzai, Z. M., Wood, S. J., Inder, T. E., Warfield, S. K., Doyle, L. W., & Egan, G. F. (2012a). Optimizing hippocampal segmentation in infants utilizing MRI post-acquisition processing. Neuroinformatics, 10(2), 173–180.  https://doi.org/10.1007/s12021-011-9137-7.Google Scholar
  79. Thompson, D. K., Inder, T. E., Faggian, N., Warfield, S. K., Anderson, P. J., Doyle, L. W., & Egan, G. F. (2012b). Corpus callosum alterations in very preterm infants: perinatal correlates and 2 year neurodevelopmental outcomes. NeuroImage, 59(4), 3571–3581.  https://doi.org/10.1016/j.neuroimage.2011.11.057.Google Scholar
  80. Thompson, D. K., Lee, K. J., Egan, G. F., Warfield, S. K., Doyle, L. W., Anderson, P. J., & Inder, T. E. (2014). Regional white matter microstructure in very preterm infants: predictors and 7 year outcomes. Cortex, 52, 60–74.  https://doi.org/10.1016/j.cortex.2013.11.010.Google Scholar
  81. Thompson, D. K., Lee, K. J., van Bijnen, L., Leemans, A., Pascoe, L., Scratch, S. E., Cheong, J., Egan, G. F., Inder, T. E., Doyle, L. W., & Anderson, P. J. (2015). Accelerated corpus callosum development in prematurity predicts improved outcome. Human Brain Mapping, 36(10), 3733–3748.  https://doi.org/10.1002/hbm.22874.Google Scholar
  82. Tullberg, M., Fletcher, E., DeCarli, C., Mungas, D., Reed, B. R., Harvey, D. J., Weiner, M. W., Chui, H. C., & Jagust, W. J. (2004). White matter lesions impair frontal lobe function regardless of their location. Neurology, 63(2), 246–253.  https://doi.org/10.1212/01.wnl.0000130530.55104.b5.Google Scholar
  83. Unterrainer, J. M., & Owen, A. M. (2006). Planning and problem solving: from neuropsychology to functional neuroimaging. Journal of Physiology - Paris, 99(4), 308–317.  https://doi.org/10.1016/j.jphysparis.2006.03.014.Google Scholar
  84. van den Heuvel, O. A., Groenewegen, H. J., Barkhof, F., Lazeron, R. H. C., van Dyck, R., & Veltman, D. J. (2003). Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of tower of London task. NeuroImage, 18(2), 367–374.  https://doi.org/10.1016/S1053-8119(02)00010-1.Google Scholar
  85. van der Knaap, L. J., & van der Ham, I. J. M. (2011). How does the corpus callosum mediate interhemispheric transfer? A review. Behavioural Brain Research, 223(1), 211–221.  https://doi.org/10.1016/j.bbr.2011.04.018.Google Scholar
  86. van der Knaap, M. S., van Wezel-Meijler, G., Barth, P. G., Barkhof, F., Ader, H. J., & Valk, J. (1996). Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology, 200(2), 389–396.  https://doi.org/10.1148/radiology.200.2.8685331.Google Scholar
  87. Volpe, J. J. (2009a). Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. The Lancet Neurology, 8(1), 110–124.  https://doi.org/10.1016/S1474-4422(08)70294-1.Google Scholar
  88. Volpe, J. J. (2009b). Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. Journal of Child Neurology, 24(9), 1085–1104.  https://doi.org/10.1177/0883073809338067.Google Scholar
  89. Wilson-Ching, M., Pascoe, L., Doyle, L. W., & Anderson, P. J. (2014). Effects of correcting for prematurity on cognitive test scores in childhood. Journal of Paediatrics and Child Health, 50(3), 182–188.  https://doi.org/10.1111/jpc.12475.Google Scholar
  90. Woodward, L. J., Anderson, P. J., Austin, N. C., Howard, K., & Inder, T. E. (2006). Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. The New England Journal of Medicine, 355(7), 685–694.  https://doi.org/10.1056/nejmoa053792.Google Scholar
  91. Woodward, L. J., Clark, C. A. C., Pritchard, V. E., Anderson, P. J., & Inder, T. E. (2011). Neonatal white matter abnormalities predict global executive function impairment in children born very preterm. Developmental Neuropsychology, 36(1), 22–41.  https://doi.org/10.1080/87565641.2011.540530.Google Scholar
  92. Woodward, L. J., Clark, C. A. C., Bora, S., & Inder, T. E. (2012). Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children. PLoS One, 7(12), e51879.  https://doi.org/10.1371/journal.pone.0051879.Google Scholar
  93. Young, J. M., Morgan, B. R., Powell, T. L., Moore, A. M., Whyte, H. E. A., Smith, M. L., & Taylor, M. J. (2016). Associations of perinatal clinical and magnetic resonance imaging measures with developmental outcomes in children born very preterm. The Journal of Pediatrics, 170, 90–96.  https://doi.org/10.1016/j.jpeds.2015.11.044.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kristina M. Haebich
    • 1
    • 2
  • Catherine Willmott
    • 1
    • 3
  • Shannon E. Scratch
    • 2
    • 4
    • 5
  • Leona Pascoe
    • 1
    • 2
  • Katherine J. Lee
    • 6
    • 7
  • Megan M. Spencer-Smith
    • 1
    • 2
  • Jeanie L. Y. Cheong
    • 2
    • 8
    • 9
  • Terrie E. Inder
    • 10
  • Lex W. Doyle
    • 2
    • 7
    • 8
    • 9
  • Deanne K. Thompson
    • 2
    • 5
    • 11
  • Peter J. Anderson
    • 1
    • 2
    Email author
  1. 1.Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash UniversityMelbourneAustralia
  2. 2.Clinical SciencesMurdoch Children’s Research InstituteMelbourneAustralia
  3. 3.Monash Epworth Rehabilitation Research CentreMelbourneAustralia
  4. 4.Bloorview Research Institute, Holland Bloorview Kids Rehabilitation HospitalTorontoCanada
  5. 5.Department of PediatricsUniversity of TorontoTorontoCanada
  6. 6.Clinical Epidemiology and Biostatistics UnitMurdoch Children’s Research InstituteMelbourneAustralia
  7. 7.Department of PaediatricsUniversity of MelbourneMelbourneAustralia
  8. 8.Premature Infant Follow-up Programme, Royal Women’s HospitalMelbourneAustralia
  9. 9.Department of Obstetrics and GynaecologyRoyal Women’s HospitalMelbourneAustralia
  10. 10.Department of Pediatric Newborn MedicineBrigham and Women’s HospitalBostonUSA
  11. 11.Florey Institute of Neurosciences and Mental HealthMelbourneAustralia

Personalised recommendations