Advertisement

Episodic memory for visual scenes suggests compensatory brain activity in breast cancer patients: a prospective longitudinal fMRI study

  • Denise PergolizziEmail author
  • James C. Root
  • Hong Pan
  • David Silbersweig
  • Emily Stern
  • Steven D. Passik
  • Tim A. Ahles
ORIGINAL RESEARCH
  • 29 Downloads

Abstract

It has been hypothesized that breast cancer and its chemotherapy can impart functional neural changes via an overlap with biological mechanisms associated with aging. Here we used fMRI to assess whether changes in neural activity accompanying visual episodic memory encoding and retrieval suggest altered activations according to patterns seen in functional imaging of cognitive aging. In a prospective longitudinal design, breast cancer patients (n = 13) were scanned during memory encoding and retrieval before and after chemotherapy treatment, and compared to healthy-age matched controls (n = 13). Our results indicate that despite equivalent behavioral performance, encoding and retrieval resulted in increased activation of prefrontal regions for the breast cancer group compared to controls for both before and after chemotherapy treatment. This was accompanied by decreased activity in posterior brain regions after chemotherapy, particularly those involved in visual processing, for the breast cancer group compared to controls. These findings are discussed as evidence for a possible anterior shift in neural processing to compensate for deficiencies in posterior brain regions, consistent with an accelerated aging account. Cancer and chemotherapy can impact brain regions underlying episodic memory, leading to additional recruitment of control regions, which may be linked to mechanisms related to aging.

Keywords

Breast Cancer fMRI Episodic memory Chemotherapy 

Notes

Acknowledgements

TAA and SDP were supported by the Starr Cancer Consortium (protocol #1-A17) and Amgen, Inc. DP would like to acknowledge the NIH/NCI Cancer Center Support Grant P30 CA008748 and the NCI award number T32 CA009461 under which authorship for this work was supported. The content is solely responsible of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

Denise Pergolizzi, James C. Root, Hong Pan, David Silbersweig, Emily Stern, Steven D. Passik and Tim A. Ahles declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

References

  1. Ahles, T. A., & Root, J. C. (2018). Cognitive effects of Cancer and Cancer treatments. Annual Review of Clinical Psychology, 14(8), 425–451.  https://doi.org/10.1146/annurev-clinpsy-050817-084903.Google Scholar
  2. Ahles, T. A., Root, J. C., & Ryan, E. L. (2012). Cancer- and cancer treatment-associated cognitive change: An update on the state of the science. Journal of Clinical Oncology, 30(30), 3675–3686.  https://doi.org/10.1200/JCO.2012.43.0116.Google Scholar
  3. Al-Tweigeri, T., Nabholtz, J. M., & Mackey, J. R. (1996). Ocular toxicity and cancer chemotherapy. Cancer, 78(7), 1359–1373.  https://doi.org/10.1002/(SICI)1097-0142(19961001)78:7<1359::AID-CNCR1>3.0.CO;2-G.Google Scholar
  4. Anderson, N. D., Iidaka, T., Cabeza, R., Kapur, S., McIntosh, A. R., & Craik, F. I. (2000). The effects of divided attention on encoding- and retrieval-related brain activity: A PET study of younger and older adults. Journal of Cognitive Neuroscience, 12(5), 775–792.  https://doi.org/10.1162/089892900562598.Google Scholar
  5. Anstey, K. J., Butterworth, P., Borzycki, M., & Andrews, S. (2006). Between- and within-individual effects of visual contrast sensitivity on perceptual matching, processing speed, and associative memory in older adults. Gerontology, 52(2), 124–130.  https://doi.org/10.1159/000090958.Google Scholar
  6. Badiola, I., Santaolalla, F., Garcia-Gallastegui, P., Ana, S. R., Unda, F., & Ibarretxe, G. (2015). Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing. Ageing Research Reviews, 23(Pt B), 125–138.  https://doi.org/10.1016/j.arr.2015.03.004.Google Scholar
  7. Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. Neuroscientist, 13(3), 280–291.  https://doi.org/10.1177/1073858407299290.Google Scholar
  8. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546.  https://doi.org/10.1016/j.tics.2004.10.003.Google Scholar
  9. Buckner, R. L., Koutstaal, W., Schacter, D. L., Wagner, A. D., & Rosen, B. R. (1998). Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success. NeuroImage, 7(3), 151–162.  https://doi.org/10.1006/nimg.1998.0327.Google Scholar
  10. Bunge, S. A., Burrows, B., & Wagner, A. D. (2004). Prefrontal and hippocampal contributions to visual associative recognition: Interactions between cognitive control and episodic retrieval. Brain and Cognition, 56(2 SPEC. ISS.), 141–152.  https://doi.org/10.1016/j.bandc.2003.08.001
  11. Cabeza, R., & Dennis, N. A. (2012). Frontal lobes and aging. In Principles of Frontal Lobe Function (pp. 628–652).  https://doi.org/10.1093/acprof:oso/9780195134971.001.0001.
  12. Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S., et al. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. The Journal of Neuroscience, 17(1), 391–400.Google Scholar
  13. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402.  https://doi.org/10.1006/nimg.2002.1280.Google Scholar
  14. Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364–375.Google Scholar
  15. Chen, M. L., Miaskowski, C., Liu, L. N., & Chen, S. C. (2012). Changes in perceived attentional function in women following breast cancer surgery. Breast Cancer Research and Treatment, 131(2), 599–606.  https://doi.org/10.1007/s10549-011-1760-3.Google Scholar
  16. Chun, M. M., & Johnson, M. K. (2011). Memory: Enduring traces of perceptual and reflective attention. Neuron, 72(4), 520–535.  https://doi.org/10.1016/j.neuron.2011.10.026.Google Scholar
  17. Cimprich, B., Reuter-Lorenz, P., Nelson, J., Clark, P. M., Therrien, B., Normolle, D., et al. (2010). Prechemotherapy alterations in brain function in women with breast cancer. Journal of Clinical and Experimental Neuropsychology, 32(3), 324–331.  https://doi.org/10.1080/13803390903032537.Google Scholar
  18. Cohen, J. D., Botvinick, M., & Carter, C. S. (2000). Anterior cingulate and prefrontal cortex: who’s in control? Nature Neuroscience, 3(5), 421–423.  https://doi.org/10.1038/74783.Google Scholar
  19. Conroy, S. K., McDonald, B. C., Ahles, T. A., West, J. D., & Saykin, A. J. (2013a). Chemotherapy-induced amenorrhea: A prospective study of brain activation changes and neurocognitive correlates. Brain Imaging and Behavior, 7(4), 491–500.  https://doi.org/10.1007/s11682-013-9240-5.Google Scholar
  20. Conroy, S. K., McDonald, B. C., Smith, D. J., Moser, L. R., West, J. D., Kamendulis, L. M., et al. (2013b). Alterations in brain structure and function in breast cancer survivors: Effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Research and Treatment, 137(2), 493–502.  https://doi.org/10.1007/s10549-012-2385-x.Google Scholar
  21. Craik, F. I. M. (2002). Levels of processing: Past, present... And future? Memory, 10(5–6), 305–318.  https://doi.org/10.1080/09658210244000135.Google Scholar
  22. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684.  https://doi.org/10.1016/S0022-5371(72)80001-X.Google Scholar
  23. Daselaar, S. M., Veltman, D. J., Rombouts, S. A. R. B., Raaijmakers, J. G. W., & Jonker, C. (2003). Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain: A Journal of Neurology, 126(Pt 1), 43–56.  https://doi.org/10.1093/brain/awg005.Google Scholar
  24. Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209.  https://doi.org/10.1093/cercor/bhm155.Google Scholar
  25. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., van Dam, F. S. A. M., Nederveen, A. J., et al. (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Human Brain Mapping, 32(8), 1206–1219.  https://doi.org/10.1002/hbm.21102.Google Scholar
  26. Dennis, N. A., Hayes, S. M., Prince, S. E., Madden, D. J., Huettel, S. A., & Cabeza, R. (2008). Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(4), 791–808.  https://doi.org/10.1037/0278-7393.34.4.791.Google Scholar
  27. Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology, 30(3), 274–281.  https://doi.org/10.1200/JCO.2011.36.8571.Google Scholar
  28. Deprez, S., Vandenbulcke, M., Peeters, R., Emsell, L., Smeets, A., Christiaens, M. R., et al. (2014). Longitudinal assessment of chemotherapy-induced alterations in brain activation during multitasking and its relation with cognitive complaints. Journal of Clinical Oncology, 32(19), 2031–2038.  https://doi.org/10.1200/JCO.2013.53.6219.Google Scholar
  29. Downie, F. P., Mar Fan, H. G., Houédé-Tchen, N., Yi, Q., & Tannock, I. F. (2006). Cognitive function, fatigue, and menopausal symptoms in breast cancer patients receiving adjuvant chemotherapy: Evaluation with patient interview after formal assessment. Psycho-Oncology, 15(10), 921–930.  https://doi.org/10.1002/pon.1035.Google Scholar
  30. Eisner, A., & Luoh, S. W. (2011). Breast cancer medications and vision: Effects of treatments for early-stage disease. Current Eye Research, 36(10), 867–885.  https://doi.org/10.3109/02713683.2011.594202.Google Scholar
  31. Ferguson, R. J., Mcdonald, B. C., Saykin, A. J., & Ahles, T. A. (2007). Brain structure and function differences in monozygotic twins: Possible effects of breast Cancer therapy. Journal of Clinical Oncology, 25(25), 3866–3870.  https://doi.org/10.1200/JCO.2007.10.8639 Brain.Google Scholar
  32. Frank, L. R., Buxton, R. B., Wong, E. C. (2001). Estimation of respiration-induced noise fluctuations from undersampled multislice fMRI data. Magnetic Resonance in Medicine, 45(4), 635–644.  https://doi.org/10.1002/mrm.1086.
  33. Frank, J. S., Vance, D. E., Jukkala, A., & Meneses, K. M. (2014). Attention and memory deficits in breast cancer survivors: Implications for nursing practice and research. Journal of Neuroscience Nursing, 46(5), 274–284.  https://doi.org/10.1097/JNN.0000000000000078.Google Scholar
  34. Grady, C. L., Maisog, J. M., Horwitz, B., Ungerleider, L. G., Mentis, M. J., Salerno, J. A., et al. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. The Journal of Neuroscience, 14(3 Pt 2), 1450–1462.  https://doi.org/10.1080/09541440042000304.Google Scholar
  35. Grady, C. L., McIntosh, A. R., Rajah, M. N., Beig, S., & Craik, F. I. M. (1999). The effects of age on the neural correlates of episodic encoding. Cerebral Cortex, 9(8), 805–814.  https://doi.org/10.1093/Cercor/9.8.805.Google Scholar
  36. Grady, C. L., Bernstein, L. J., Beig, S., & Siegenthaler, A. L. (2002). The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychology and Aging, 17(1), 7–23.Google Scholar
  37. Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L. L., & Park, D. C. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17(1), 84–96.  https://doi.org/10.1162/0898929052880048.Google Scholar
  38. Gutchess, A. H., Hebrank, A., Sutton, B. P., Leshikar, E., Chee, M. W. L., Tan, J. C., et al. (2007). Contextual interference in recognition memory with age. NeuroImage, 35(3), 1338–1347.  https://doi.org/10.1016/j.neuroimage.2007.01.043.Google Scholar
  39. Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30, 513–541.  https://doi.org/10.1016/0749-596X(91)90025-F.Google Scholar
  40. Jim, H. S. L., Phillips, K. M., Chait, S., Faul, L. A., Popa, M. A., Lee, Y.-H., et al. (2012). Meta-analysis of cognitive functioning in breast Cancer survivors previously treated with standard-dose chemotherapy. Journal of Clinical Oncology, 30(29), 3578–3587.  https://doi.org/10.1200/JCO.2011.39.5640.Google Scholar
  41. Kam, J. W. Y., Brenner, C. A., Handy, T. C., Boyd, L. A., Liu-Ambrose, T., Lim, H. J., et al. (2015). Sustained attention abnormalities in breast cancer survivors with cognitive deficits post chemotherapy: An electrophysiological study. Clinical Neurophysiology, 127, 369–378.  https://doi.org/10.1016/j.clinph.2015.03.007.Google Scholar
  42. Kapur, S., Craik, F. I., Tulving, E., Wilson, A. A., Houle, S., & Brown, G. M. (1994). Neuroanatomical correlates of encoding in episodic memory: Levels of processing effect. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2008–2011.  https://doi.org/10.1073/pnas.91.6.2008.Google Scholar
  43. Kesler, S. R., Bennett, F. C., Mahaffey, M. L., & Spiegel, D. (2009). Regional brain activation during verbal declarative memory in metastatic breast cancer. Clinical Cancer Research, 15(21), 6665–6673.  https://doi.org/10.1158/1078-0432.CCR-09-1227.Google Scholar
  44. Kohli, S., Griggs, J. J., Roscoe, J. a., Jean-Pierre, P., Bole, C., Mustian, K. M., et al. (2007). Self-reported cognitive impairment in patients with Cancer. Journal of Oncology Practice, 3(2), 54–59.  https://doi.org/10.1200/JOP.0722001.Google Scholar
  45. Leshikar, E. D., Gutchess, A. H., Hebrank, A. C., Sutton, B. P., & Park, D. C. (2010). The impact of increased relational encoding demands on frontal and hippocampal function in older adults. Cortex, 46(4), 507–521.  https://doi.org/10.1016/j.cortex.2009.07.011.Google Scholar
  46. Leshikar, E. D., Duarte, A., & Hertzog, C. (2012). Task-selective memory effects for successfully implemented encoding strategies. PLoS One, 7(5), e38160.  https://doi.org/10.1371/journal.pone.0038160.Google Scholar
  47. Levy, B. J., & Anderson, M. C. (2002). Inhibitory process and the control of memory retrieval. Trends in Cognitive Sciences, 6(7), 299–305.Google Scholar
  48. Li, S. C., Lindenberger, U., & Frensch, P. A. (2000). Unifying cognitive aging: From neuromodulation to representation to cognition. Neurocomputing, 32–33(November 2016), 879–890.  https://doi.org/10.1016/S0925-2312(00)00256-3.Google Scholar
  49. Li, S. C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Sciences, 5(11), 479–486.  https://doi.org/10.1016/S1364-6613(00)01769-1.Google Scholar
  50. Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-recruitment and nonselective recruitment: Dissociable neural mechanisms associated with aging. Neuron, 33(5), 827–840.  https://doi.org/10.1016/S0896-6273(02)00612-8.Google Scholar
  51. López Zunini, R. A., Scherling, C., Wallis, N., Collins, B., MacKenzie, J., Bielajew, C., & Smith, A. M. (2013). Differences in verbal memory retrieval in breast cancer chemotherapy patients compared to healthy controls: A prospective fMRI study. Brain Imaging and Behavior, 7(4), 460–477.  https://doi.org/10.1007/s11682-012-9213-0.Google Scholar
  52. Madden, D. J., Gottlob, L. R., Denny, L. L., Turkington, T. G., Provenzale, J. M., Hawk, T. C., & Coleman, R. E. (1999). Aging and recognition memory: Changes in regional cerebral blood flow associated with components of reaction time distributions. Journal of Cognitive Neuroscience, 11(5), 511–520.  https://doi.org/10.1162/089892999563571.Google Scholar
  53. Mandelblatt, J. S., Hurria, A., McDonald, B. C., Saykin, A. J., Stern, R. A., VanMeter, J. W., et al. (2013). Cognitive effects of Cancer and its treatments at the intersection of aging: What do we know; what do we need to know? Seminars in Oncology, 40(6), 709–725.  https://doi.org/10.1053/j.seminoncol.2013.09.006.Google Scholar
  54. Mandzia, J. L., Black, S. E., McAndrews, M. P., Grady, C., & Graham, S. (2004). fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly. Human Brain Mapping, 21(1), 1–14.  https://doi.org/10.1002/hbm.10140.Google Scholar
  55. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: A prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30(20), 2500–2508.  https://doi.org/10.1200/JCO.2011.38.5674.Google Scholar
  56. Menning, S., de Ruiter, M. B., Veltman, D. J., Boogerd, W., Oldenburg, H. S. A., Reneman, L., & Schagen, S. B. (2017). Changes in brain activation in breast cancer patients depend on cognitive domain and treatment type. PLoS One, 12(3), e0171724.  https://doi.org/10.1371/journal.pone.0171724.Google Scholar
  57. Morcom, A. M., Good, C. D., Frackowiak, R. S. J., & Rugg, M. D. (2003). Age effects on the neural correlates of successful memory encoding. Brain, 126(1), 213–229.  https://doi.org/10.1093/brain/awg020.Google Scholar
  58. Nyberg, L. (2010). Levels of processing: A view from functional brain imaging. Memory, 10(5–6), 345–348.  https://doi.org/10.1080/09658210244000171.Google Scholar
  59. Otten, L. J., Henson, R. N., & Rugg, M. D. (2001). Depth of processing effects on neural correlates of memory encoding: Relationship between findings from across- and within-task comparisons. Brain, 124(Pt 2), 399–412.Google Scholar
  60. Pan, H., Epstein, J., Silbersweig, D. A., & Stern, E. (2011). New and emerging imaging techniques for mapping brain circuitry. Brain Research Reviews, 67(1–2), 226–251.  https://doi.org/10.1016/j.brainresrev.2011.02.004.Google Scholar
  61. Park, D. C., Polk, T. A., Mikels, J. A., Taylor, S. F., & Marshuetz, C. (2001). Cerebral aging: Integration of brain and behavioral models of cognitive function. Dialogues in Clinical Neuroscience, 3(3), 151–165.  https://doi.org/10.1016/0025-5416(76)90216-0.Google Scholar
  62. Perez, D. L., Pan, H., Weisholtz, D. S., Root, J. C., Tuescher, O., Fischer, D. B., et al. (2015). Altered threat and safety neural processing linked to persecutory delusions in schizophrenia: A two-task fMRI study. Psychiatry Research: Neuroimaging, 233(3), 352–366.  https://doi.org/10.1016/j.pscychresns.2015.06.002.Google Scholar
  63. Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23(17), R764–R773.  https://doi.org/10.1016/j.cub.2013.05.041.Google Scholar
  64. Prince, S. E., Dennis, N. A., & Cabeza, R. (2009). Encoding and retrieving faces and places: Distinguishing process- and stimulus-specific differences in brain activity. Neuropsychologia, 47(11), 2282–2289.  https://doi.org/10.1016/j.neuropsychologia.2009.01.021.Google Scholar
  65. Raffa, R. B., & Tallarida, R. J. (2010). Effects on the visual system might contribute to some of the cognitive deficits of cancer chemotherapy-induced ‘chemo-fog. Journal of Clinical Pharmacy and Therapeutics, 35(3), 249–255.  https://doi.org/10.1111/j.1365-2710.2009.01086.x.Google Scholar
  66. Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive ageing and the compensation hypothesis. Current Directions in Psychological Science, 17, 177–182.Google Scholar
  67. Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12(4), 191–200.  https://doi.org/10.1155/2000/421719.Google Scholar
  68. Sanoff, H. K., Deal, A. M., Krishnamurthy, J., Torrice, C., Dillon, P., Sorrentino, J., et al. (2014). Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. Journal of the National Cancer Institute, 106(4), 1–8.  https://doi.org/10.1093/jnci/dju057.Google Scholar
  69. Sato, C., Sekiguchi, A., Kawai, M., Kotozaki, Y., Nouchi, R., Tada, H., et al. (2015). Postoperative structural brain changes and cognitive dysfunction in patients with breast cancer. PLoS One, 10(11), 1–16.  https://doi.org/10.1371/journal.pone.0140655.Google Scholar
  70. Scherling, C., Collins, B., Mackenzie, J., Bielajew, C., & Smith, A. (2011). Pre-chemotherapy differences in visuospatial working memory in breast cancer patients compared to controls: An FMRI study. Frontiers in Human Neuroscience, 5(November), 122.  https://doi.org/10.3389/fnhum.2011.00122.Google Scholar
  71. Scherling, C., Collins, B., Mackenzie, J., Bielajew, C., & Smith, A. (2012). Prechemotherapy differences in response inhibition in breast cancer patients compared to controls: A functional magnetic resonance imaging study. Journal of Clinical and Experimental Neuropsychology, 34(5), 543–560.  https://doi.org/10.1080/13803395.2012.666227.Google Scholar
  72. Shiffrin, R. M., & Schneider, W. (1984). Automatic and controlled processing revisited. Psychological Review, 91(2), 269–276.  https://doi.org/10.1037/0033-295X.91.2.269.Google Scholar
  73. Silverman, D. H. S., Dy, C. J., Castellon, S. A., Lai, J., Pio, B. S., Abraham, L., et al. (2007). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5-10 years after chemotherapy. Breast Cancer Research and Treatment, 103(3), 303–311.  https://doi.org/10.1007/s10549-006-9380-z.Google Scholar
  74. Skeel, R. L., Schutte, C., van Voorst, W., & Nagra, A. (2006). The relationship between visual contrast sensitivity and neuropsychological performance in a healthy elderly sample. Journal of Clinical and Experimental Neuropsychology, 28(5), 696–705.  https://doi.org/10.1080/13803390590954173.Google Scholar
  75. Sperling, R. A., Bates, J. F., Chua, E. F., Cocchiarella, A. J., Rentz, D. M., Rosen, B. R., et al. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 74(1), 44–50.Google Scholar
  76. Stouten-Kemperman, M. M., de Ruiter, M. B., Koppelmans, V., Boogerd, W., Reneman, L., & Schagen, S. B. (2014). Neurotoxicity in breast cancer survivors ≥10 years post-treatment is dependent on treatment type. Brain Imaging and Behavior, (2015), 275–284.  https://doi.org/10.1007/s11682-014-9305-0.
  77. Tulving, E., Kapur, S., Craik, F. I., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2016–2020.Google Scholar
  78. Weisholtz, D. S., Root, J. C., Butler, T., Tüscher, O., Epstein, J., Pan, H., et al. (2015). Beyond the amygdala: Linguistic threat modulates peri-sylvian semantic access cortices. Brain and Language, 151(3), 12–22.  https://doi.org/10.1016/j.bandl.2015.10.004.Google Scholar
  79. Wood, J., Chaparro, A., Anstey, K., Lacherez, P., Chidgey, A., Eisemann, J., et al. (2010). Simulated visual impairment leads to cognitive slowing in older adults. Optometry and Vision Science, 87(12), 1037–1043.  https://doi.org/10.1097/OPX.0b013e3181fe64d7.Google Scholar
  80. Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F., & Evans, A. C. (2002). A general statistical analysis for fMRI data. NeuroImage, 15(1), 1–15.  https://doi.org/10.1006/nimg.2001.0933.Google Scholar
  81. Yao, C., Rich, J. B., Tannock, I. F., Seruga, B., Tirona, K., & Bernstein, L. J. (2016). Pretreatment differences in Intraindividual variability in reaction time between women diagnosed with breast Cancer and healthy controls. Journal of the International Neuropsychological Society, 22(05), 530–539.  https://doi.org/10.1017/S1355617716000126.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesSloan Kettering Institute for Cancer ResearchNew YorkUSA
  2. 2.Department of Psychiatry and Behavioral SciencesMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Weill Cornell Medical CollegeNew YorkUSA
  4. 4.Department of PsychiatryBrigham and Women′s HospitalBostonUSA
  5. 5.Department of RadiologyBrigham and Women′s HospitalBostonUSA
  6. 6.Harvard Medical SchoolBostonUSA
  7. 7.Brigham Research Institute Neuroscience Research CenterBrigham and Women′s HospitalBostonUSA
  8. 8.Collegium PharmaceuticalsBostonUSA
  9. 9.Department of Psychiatry and Behavioral SciencesMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations