Advertisement

Meta-analysis of the moral brain: patterns of neural engagement assessed using multilevel kernel density analysis

  • Samantha J. FedeEmail author
  • Kent A. Kiehl
ORIGINAL RESEARCH

Abstract

The neuroimaging literature in moral cognition has rapidly developed in the last decade with more than 200 publications on the topic. Neuroimaging based models generally agree that limbic regions work with medial prefrontal and temporal regions during moral processing to integrate emotional, social, and cognitive elements into decision-making. However, no quantitative work has been done examining neural response across types of moral cognition tasks. This paper uses Multilevel Kernel Density Analysis (MKDA) to conduct neuroimaging meta-analyses of the moral cognitive literature. MKDA replicated previous findings of the neural correlates of moral cognition: the left amygdala, medial prefrontal cortex, bilateral temporoparietal junction, and posterior cingulate. Random forest algorithms classified neural features as belonging to simple/utilitarian moral dilemmas, explicit/implicit moral tasks, and word/picture moral stimuli tasks; in combination with univariate contrast analyses, these results indicated a distinct pattern of processing for each of the members of these paradigm pairs. Overall, the results emphasize that the task selected for use in a moral cognition neuroimaging study is vital for the elicitation and interpretation of results. It also replicates and re-establishes the neural basis for moral processing, especially important in light of implementation errors in previous meta-analysis.

Keywords

Moral Meta-analysis fMRI MKDA Machine learning 

Notes

Acknowledgements

Drs. Carla Harenski, Jim Cavanaugh, Vince Clark, and Vince Calhoun provided feedback on the direction of this project and the early version of this manuscript. Portions of these results were presented at the 2016 Society for Neuroscience annual meeting.

Funding

The authors of this manuscript are partially supported by NIH research funding, although the work done here was not directly grant supported.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

This research did not involve humans or animals.

Supplementary material

11682_2019_35_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 28.0 kb)

References

  1. Baez, S., Couto, B., Torralva, T., Sposato, L. A., Huepe, D., Montanes, P., et al. (2014). Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurology, 71(9), 1172–1176.  https://doi.org/10.1001/jamaneurol.2014.347.CrossRefGoogle Scholar
  2. Bezalel, V., Paz, R., & Tal, A. (2019). Inhibitory and excitatory mechanisms in the human cingulate-cortex support reinforcement learning: A functional proton magnetic resonance spectroscopy study. NeuroImage, 184, 25–35.  https://doi.org/10.1016/j.neuroimage.2018.09.016.CrossRefGoogle Scholar
  3. Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15(3), 523–536.CrossRefGoogle Scholar
  4. Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., & Rosen, B. R. (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences, 99(1), 523–528.  https://doi.org/10.1073/pnas.012470999.CrossRefGoogle Scholar
  5. Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376.CrossRefGoogle Scholar
  6. Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217(4), 783–796.CrossRefGoogle Scholar
  7. Bzdok, D., Groß, D., & Eickhoff, S. B. (2015). The neurobiology of moral cognition: Relation to theory of mind, empathy, and mind-wandering Handbook of Neuroethics (pp. 127–148). Berlin: Springer.Google Scholar
  8. Caldwell, B. M., Harenski, C. L., Harenski, K. A., Fede, S. J., Steele, V. R., Koenigs, M. R., & Kiehl, K. A. (2015). Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing. Frontiers in Human Neuroscience, 9, 565.CrossRefGoogle Scholar
  9. Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2012). Decoding the role of the insula in human cognition: Functional Parcellation and large-scale reverse inference. Cerebral Cortex, 23, 739–749.  https://doi.org/10.1093/cercor/bhs065.CrossRefGoogle Scholar
  10. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.CrossRefGoogle Scholar
  11. Chee, M. W., Weekes, B., Lee, K. M., Soon, C. S., Schreiber, A., Hoon, J. J., & Chee, M. (2000). Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: Evidence from fMRI. NeuroImage, 12(4), 392–403.CrossRefGoogle Scholar
  12. Christoff, K., & Gabrieli, J. D. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28(2), 168–186.Google Scholar
  13. Ciaramelli, E., Muccioli, M., Ladavas, E., & di Pellegrino, G. (2007). Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex. Social Cognitive and Affective Neuroscience, 2(2), 84–92.  https://doi.org/10.1093/scan/nsm001.CrossRefGoogle Scholar
  14. de Oliveira-Souza, R., & Moll, J. (2009). The neural bases of normal and deviant moral cognition and behavior. Topics in Magnetic Resonance Imaging, 20(5), 261–270.  https://doi.org/10.1097/RMR.0b013e3181f22f69.CrossRefGoogle Scholar
  15. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.CrossRefGoogle Scholar
  16. Eickhoff, S. B., Laird, A. R., Fox, P. M., Lancaster, J. L., & Fox, P. T. (2017). Implementation errors in the GingerALE software: Description and recommendations. Human Brain Mapping, 38(1), 7–11.  https://doi.org/10.1002/hbm.23342.CrossRefGoogle Scholar
  17. Fede, S. J., Borg, J. S., Nyalakanti, P. K., Harenski, C. L., Cope, L. M., Sinnott-Armstrong, W., Koenigs, M., Calhoun, V.D., & Kiehl, K.A. (2016). Distinct neuronal patterns of positive and negative moral processing in psychopathy. Cognitive, Affective, & Behavioral Neuroscience, 16(6), 1074–1085.  https://doi.org/10.3758/s13415-016-0454-z
  18. Feldmanhall, O., Mobbs, D., & Dalgleish, T. (2014). Deconstructing the brain's moral network: Dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex. Social Cognitive and Affective Neuroscience, 9(3), 297–306.  https://doi.org/10.1093/scan/nss139.CrossRefGoogle Scholar
  19. Feng, C. L., Yan, X. Y., Huang, W. H., Han, S. H., & Ma, Y. N. (2018). Neural representations of the multidimensional self in the cortical midline structures. NeuroImage, 183, 291–299.  https://doi.org/10.1016/j.neuroimage.2018.08.018.CrossRefGoogle Scholar
  20. Finger, E. C., Marsh, A. A., Kamel, N., Mitchell, D. G., & Blair, J. R. (2006). Caught in the act: The impact of audience on the neural response to morally and socially inappropriate behavior. NeuroImage, 33(1), 414–421.  https://doi.org/10.1016/j.neuroimage.2006.06.011.CrossRefGoogle Scholar
  21. Glenn, A. L., Raine, A., Schug, R. A., Young, L., & Hauser, M. (2009). Increased DLPFC activity during moral decision-making in psychopathy. Molecular Psychiatry, 14(10), 909–911.  https://doi.org/10.1038/Mp.2009.76.CrossRefGoogle Scholar
  22. Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105–2108.  https://doi.org/10.1126/science.1062872.CrossRefGoogle Scholar
  23. Harenski, C. L., Antonenko, O., Shane, M. S., & Kiehl, K. A. (2008). Gender differences in neural mechanisms underlying moral sensitivity. Social Cognitive and Affective Neuroscience, 3(4), 313–321.  https://doi.org/10.1093/scan/nsn026.CrossRefGoogle Scholar
  24. Harenski, C. L., Harenski, K. A., Shane, M. S., & Kiehl, K. A. (2010). Aberrant neural processing of moral violations in criminal psychopaths. Journal of Abnormal Psychology, 119(4), 863–874.  https://doi.org/10.1037/a0020979
  25. Hiraishi, H., Hashimoto, T., Mori, K., Ito, H., & Harada, M. (2007). A preliminary fMRI study of moral judgment task in high functioning autistic children. No to Hattatsu, 39(5), 360–365.Google Scholar
  26. Johnson, M. K., Raye, C. L., Mitchell, K. J., Touryan, S. R., Greene, E. J., & Nolen-Hoeksema, S. (2006). Dissociating medial frontal and posterior cingulate activity during self-reflection. Social Cognitive and Affective Neuroscience, 1(1), 56–64.  https://doi.org/10.1093/scan/nsl004.CrossRefGoogle Scholar
  27. Kahane, G., Wiech, K., Shackel, N., Farias, M., Savulescu, J., & Tracey, I. (2012). The neural basis of intuitive and counterintuitive moral judgment. Social Cognitive and Affective Neuroscience, 7(4), 393–402.  https://doi.org/10.1093/scan/nsr005.CrossRefGoogle Scholar
  28. Kerr, K. F. (2009). Comments on the analysis of unbalanced microarray data. Bioinformatics, 25(16), 2035–2041.CrossRefGoogle Scholar
  29. Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Research, 142(2–3), 107–128.  https://doi.org/10.1016/j.psychres.2005.09.013.CrossRefGoogle Scholar
  30. Kober, H., & Wager, T. D. (2010). Meta-analysis of neuroimaging data. Wiley Interdisciplinary Reviews: Cognitive Science, 1(2), 293–300.Google Scholar
  31. Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908–911.  https://doi.org/10.1038/Nature05631.CrossRefGoogle Scholar
  32. Koster-Hale, J., Saxe, R., Dungan, J., & Young, L. L. (2013). Decoding moral judgments from neural representations of intentions. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5648–5653.  https://doi.org/10.1073/pnas.1207992110.CrossRefGoogle Scholar
  33. Kuhn, M. (2017). caret: Classification and Regression Training (Version 6.0–77). Retrieved from https://CRAN.R-project.org/package=caret
  34. Lin, L. C., Qu, Y., & Telzer, E. H. (2018). Intergroup social influence on emotion processing in the brain. Proceedings of the National Academy of Sciences of the United States of America, 115(42), 10630–10635.  https://doi.org/10.1073/pnas.1802111115.CrossRefGoogle Scholar
  35. Lisofsky, N., Kazzer, P., Heekeren, H. R., & Prehn, K. (2014). Investigating socio-cognitive processes in deception: A quantitative meta-analysis of neuroimaging studies. Neuropsychologia, 61, 113–122.  https://doi.org/10.1016/j.neuropsychologia.2014.06.001.CrossRefGoogle Scholar
  36. Miller, M. B., Sinnott-Armstrong, W., Young, L., King, D., Paggi, A., Fabri, M., et al. (2010). Abnormal moral reasoning in complete and partial callosotomy patients. Neuropsychologia, 48(7), 2215–2220.  https://doi.org/10.1016/j.neuropsychologia.2010.02.021.CrossRefGoogle Scholar
  37. Moll, J., de Oliveira-Souza, R., Eslinger, P. J., Bramati, I. E., Mourao-Miranda, J., Andreiuolo, P. A., & Pessoa, L. (2002). The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. Journal of Neuroscience, 22(7), 2730–2736.Google Scholar
  38. Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F., & Grafman, J. (2005). The neural basis of human moral cognition. Nature Reviews Neuroscience, 6(10), 799–809.CrossRefGoogle Scholar
  39. Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M., & Turchi, J. (2015). Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. Elife, 4.  https://doi.org/10.7554/eLife.11695.
  40. Nakao, T., Ohira, H., & Northoff, G. (2012). Distinction between externally vs. internally guided decision-making: Operational differences, meta-analytical comparisons and their theoretical implications. Frontiers in Neuroscience, 6.  https://doi.org/10.3389/fnins.2012.00031.
  41. Papageorgiou, G. K., Sallet, J., Wittmann, M. K., Chau, B. K., Schüffelgen, U., Buckley, M. J., & Rushworth, M. F. (2017). Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task. Nature Communications, 8(1), 1886.CrossRefGoogle Scholar
  42. Parkinson, C., Sinnott-Armstrong, W., Koralus, P. E., Mendelovici, A., McGeer, V., & Wheatley, T. (2011). Is morality unified? Evidence that distinct neural systems underlie moral judgments of harm, dishonesty, and disgust. Journal of Cognitive Neuroscience, 23(10), 3162–3180.  https://doi.org/10.1162/jocn_a_00017.CrossRefGoogle Scholar
  43. Perner, J., Aichhorn, M., Kronbichler, M., Staffen, W., & Ladurner, G. (2006). Thinking of mental and other representations: The roles of left and right temporo-parietal junction. Social Neuroscience, 1(3–4), 245–258.CrossRefGoogle Scholar
  44. Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., et al. (2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2), 115–126.CrossRefGoogle Scholar
  45. Prehn, K., Wartenburger, I., Meriau, K., Scheibe, C., Goodenough, O. R., Villringer, A., et al. (2008). Individual differences in moral judgment competence influence neural correlates of socio-normative judgments. Social Cognitive and Affective Neuroscience, 3(1), 33–46.  https://doi.org/10.1093/scan/nsm037.CrossRefGoogle Scholar
  46. Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45(3), 810–823.CrossRefGoogle Scholar
  47. Schaich Borg, J., Hynes, C., Van Horn, J., Grafton, S., & Sinnott-Armstrong, W. (2006). Consequences, action, and intention as factors in moral judgments: An FMRI investigation. Journal of Cognitive Neuroscience, 18(5), 803–817.  https://doi.org/10.1162/jocn.2006.18.5.803.CrossRefGoogle Scholar
  48. Scheuerecker, J., Frodl, T., Koutsouleris, N., Zetzsche, T., Wiesmann, M., Kleemann, A., et al. (2007). Cerebral differences in explicit and implicit emotional processing–an fMRI study. Neuropsychobiology, 56(1), 32–39.CrossRefGoogle Scholar
  49. Schneider, K., Pauly, K. D., Gossen, A., Mevissen, L., Michel, T. M., Gur, R. C., et al. (2012). Neural correlates of moral reasoning in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 8(6), 702-710.  https://doi.org/10.1093/scan/nss051
  50. Shenhav, A., & Greene, J. D. (2010). Moral judgments recruit domain-general valuation mechanisms to integrate representations of probability and magnitude. Neuron, 67(4), 667–677.  https://doi.org/10.1016/j.neuron.2010.07.020.CrossRefGoogle Scholar
  51. Shenhav, A., & Greene, J. D. (2014). Integrative moral judgment: Dissociating the roles of the amygdala and ventromedial prefrontal cortex. Journal of Neuroscience, 34(13), 4741–4749.  https://doi.org/10.1523/jneurosci.3390-13.2014.CrossRefGoogle Scholar
  52. Takahashi, H., Kato, M., Matsuura, M., Koeda, M., Yahata, N., Suhara, T., & Okubo, Y. (2008). Neural correlates of human virtue judgment. Cerebral Cortex, 18(8), 1886–1891.  https://doi.org/10.1093/cercor/bhm214
  53. Tangney, J. P., Stuewig, J., & Mashek, D. J. (2007). Moral emotions and moral behavior. Annual Review of Psychology, 58, 345–372.  https://doi.org/10.1146/annurev.psych.56.091103.070145.CrossRefGoogle Scholar
  54. Timmers, I., Park, A. L., Fischer, M. D., Kronman, C. A., Heathcote, L. C., Hernandez, J. M., & Simons, L. E. (2018). Is empathy for pain unique in its neural correlates? A meta-analysis of neuroimaging studies of empathy. Frontiers in Behavioral Neuroscience, 12.  https://doi.org/10.3389/fnbeh.2018.00289.
  55. Torgo, L. (2016). Data mining with R: Learning with case studies. Boca Raton: Chapman and Hall/CRC.Google Scholar
  56. van Elk, M., Duizer, M., Sligte, I., & van Schie, H. (2017). Transcranial direct current stimulation of the right temporoparietal junction impairs third-person perspective taking. Cognitive, Affective, & Behavioral Neuroscience, 17(1), 9–23.  https://doi.org/10.3758/s13415-016-0462-z.CrossRefGoogle Scholar
  57. Verdejo-Garcia, A., Contreras-Rodríguez, O., Fonseca, F., Cuenca, A., Soriano-Mas, C., Rodriguez, J., et al. (2014). Functional alteration in frontolimbic systems relevant to moral judgment in cocaine-dependent subjects. Addiction Biology, 19(2), 272–281.  https://doi.org/10.1111/j.1369-1600.2012.00472.x.CrossRefGoogle Scholar
  58. Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274.  https://doi.org/10.3758/cabn.3.4.255.CrossRefGoogle Scholar
  59. Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social Cognitive and Affective Neuroscience, 2(2), 150–158.CrossRefGoogle Scholar
  60. Wager, T. D., Lindquist, M. A., Nichols, T. E., Kober, H., & Van Snellenberg, J. X. (2009). Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage, 45(1), S210–S221.CrossRefGoogle Scholar
  61. Wang, H.-T., Poerio, G., Murphy, C., Bzdok, D., Jefferies, E., & Smallwood, J. (2017). Dimensions of experience: Exploring the heterogeneity of the wandering mind. Psychological Science.  https://doi.org/10.1177/0956797617728727.
  62. Wellcome Department of Cognitive Neurology. (2005). SPM 5. London, UK. Retrieved from http://www.fil.ion.ucl.ac.uk/spm
  63. Wurm, M. F., & Schubotz, R. I. (2018). The role of the temporoparietal junction (TPJ) in action observation: Agent detection rather than visuospatial transformation. NeuroImage, 165, 48–55.CrossRefGoogle Scholar
  64. Young, L., & Saxe, R. (2009). An FMRI investigation of spontaneous mental state inference for moral judgment. Journal of Cognitive Neuroscience, 21(7), 1396–1405.  https://doi.org/10.1162/jocn.2009.21137.CrossRefGoogle Scholar
  65. Young, L., Cushman, F., Hauser, M., & Saxe, R. (2007). The neural basis of the interaction between theory of mind and moral judgment. Proceedings of the National Academy of Sciences, 104(20), 8235–8240.CrossRefGoogle Scholar
  66. Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A., & Saxe, R. (2010). Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6753–6758.  https://doi.org/10.1073/pnas.0914826107.CrossRefGoogle Scholar
  67. Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences, 104(15), 6430–6435.  https://doi.org/10.1073/pnas.0607061104.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Psychology DepartmentUniversity of New MexicoAlbuquerqueUSA
  2. 2.Mind Research Network and Lovelace Biomedical and Environmental Institute (LBERI)AlbuquerqueUSA

Personalised recommendations