Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Longitudinal investigation of cognitive deficits in breast cancer patients and their gray matter correlates: impact of education level

  • 239 Accesses

  • 1 Citations

Abstract

Cognitive deficits are a major complaint in breast cancer patients, even before chemotherapy. Comprehension of the cerebral mechanisms related to cognitive impairment in breast cancer patients remains difficult due to the scarcity of studies investigating both cognitive and anatomical imaging changes. Furthermore, only some of the patients experienced cognitive decline following chemotherapy, yet few studies have identified risk factors for cognitive deficits in these patients. It has been shown that education level could impact cognitive abilities during the recovery phase following chemotherapy. Our main aim was to longitudinally evaluate cognitive and anatomical changes associated with cancer and chemotherapy in breast cancer patients. Our secondary aim was to assess the impact of education level on cognitive performances and gray matter (GM) atrophy in these patients. Twenty patients were included before chemotherapy (T1), 1 month (T2) and 1 year (T3) after chemotherapy. Twenty-seven controls without a history of cancer were assessed at T1 and T3 only. Cluster groups based on education level were defined for both groups and were further compared. Comparison between patients and controls revealed deficits in patients on verbal episodic memory retrieval at T1 and T3 and on executive functions at T3. After chemotherapy, breast cancer patients had GM atrophy that persisted or recovered 1 year after chemotherapy depending on the cortical areas. Increase in GM volumes from T1 to T3 were also found in both groups. At T2, patients with a higher level of education compared to lower level exhibited higher episodic memory retrieval and state anxiety scores, both correlating with cerebellar volume. This higher level of education group exhibited hippocampal atrophy. Our results suggest that, before chemotherapy, cancer-related processes impact cognitive functioning and that this impact seems exacerbated by the effect of chemotherapy on certain brain regions. Increase in GM volumes after chemotherapy were unexpected and warrant further investigations. Higher education level was associated, 1 month after the end of chemotherapy, with greater anxiety and hippocampal atrophy despite a lack of cognitive deficits. These results suggest, for the first time, the occurrence of compensation mechanisms that may be linked to cognitive reserve in relationship to state anxiety. This identification of factors, which may compensate cognitive impairment following chemotherapy, is critical for patient care and quality of life.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

VBM:

Voxel Based Morphometry

GM:

Gray Matter

ICCTF:

International Cancer and Cognition Task Force

MRI:

Magnetic Resonance Imaging

LME:

Linear Mixed Model

FEW:

Family-wise error

STAIA:

State-Trait Anxiety

BDI-SF:

Beck Depression Inventory – Short Form

ESR:

Encoding, Storage, Retrieval

BEM:

Battérie D’Efficience Mnésique

TMT:

Trail Making Test

LRT:

Likehood Ratio Test

AIC:

Akaike Information Criterion

BIC:

Bayesian Information Criterion

WM:

White Matter

CSF:

Cerebro-spinal Fluid

FWHM:

Full Width at Half Maximum

TIV:

Total intracranial volume

MMSE:

Mini Mental State Examination

SD:

Standard Deviation

SMA:

Supplementary Motor Area

MNI:

Montreal Neurological Institute

References

  1. Addolorato, G., Ancona, C., Capristo, E., Graziosetto, R., Di Rienzo, L., Maurizi, M., & Gasbarrini, G. (1999). State and trait anxiety in women affected by allergic and vasomotor rhinitis. Journal of Psychosomatic Research, 46(3), 283–289.

  2. Ahles, T. A. (2012). Brain vulnerability to chemotherapy toxicities. Psycho-Oncology, 21(11), 1141–1148. https://doi.org/10.1002/pon.3196.

  3. Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews Cancer, 7(3), 192–201. https://doi.org/10.1038/nrc2073.

  4. Ahles, T. A., Saykin, A. J., McDonald, B. C., Furstenberg, C. T., Cole, B. F., Hanscom, B. S., et al. (2008). Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Research and Treatment, 110(1), 143–152. https://doi.org/10.1007/s10549-007-9686-5.

  5. Ahles, T. A., Saykin, A. J., McDonald, B. C., Li, Y., Furstenberg, C. T., Hanscom, B. S., et al. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(29), 4434–4440. https://doi.org/10.1200/JCO.2009.27.0827.

  6. Ahles, T. A., Root, J. C., & Ryan, E. L. (2012). Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(30), 3675–3686. https://doi.org/10.1200/JCO.2012.43.0116.

  7. Anderson, B. J. (2011). Plasticity of gray matter volume: the cellular and synaptic plasticity that underlies volumetric change. Developmental Psychobiology, 53(5), 456–465. https://doi.org/10.1002/dev.20563.

  8. Ando-Tanabe, N., Iwamitsu, Y., Kuranami, M., Okazaki, S., Yasuda, H., Nakatani, Y., et al. (2014). Cognitive function in women with breast cancer receiving adjuvant chemotherapy and healthy controls. Breast Cancer (Tokyo, Japan), 21(4), 453–462. https://doi.org/10.1007/s12282-012-0405-7.

  9. Arndt, J., Das, E., Schagen, S. B., Reid-Arndt, S. A., Cameron, L. D., & Ahles, T. A. (2014). Broadening the cancer and cognition landscape: the role of self-regulatory challenges. Psycho-Oncology, 23(1), 1–8. https://doi.org/10.1002/pon.3351.

  10. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007.

  11. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018.

  12. Bagiella, E., Sloan, R. P., & Heitjan, D. F. (2000). Mixed-effects models in psychophysiology. Psychophysiology, 37(1), 13–20.

  13. Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893.

  14. Bergouignan, L., Lefranc, J. P., Chupin, M., Morel, N., Spano, J. P., & Fossati, P. (2011). Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval. PLoS One, 6(10), e25349. https://doi.org/10.1371/journal.pone.0025349.

  15. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345. https://doi.org/10.1152/jn.00339.2011.

  16. Cardebat, D., Doyon, B., Puel, M., Goulet, P., & Joanette, Y. (1990). Evocation lexicale formelle et sémantique chez des sujets normaux. Performances et dynamiques de production en fonction du sexe, de l’âge et du niveau d’étude. Acta Neurologica Belgica, 90(4), 207–217.

  17. Cheng, H., Li, W., Gong, L., Xuan, H., Huang, Z., Zhao, H., et al. (2017). Altered resting-state hippocampal functional networks associated with chemotherapy-induced prospective memory impairment in breast cancer survivors. Scientific Reports, 7, 45135. https://doi.org/10.1038/srep45135.

  18. Cimprich, B., Reuter-Lorenz, P., Nelson, J., Clark, P. M., Therrien, B., Normolle, D., et al. (2010). Prechemotherapy alterations in brain function in women with breast cancer. Journal of Clinical and Experimental Neuropsychology, 32(3), 324–331. https://doi.org/10.1080/13803390903032537.

  19. Collins, B., Mackenzie, J., Tasca, G. A., Scherling, C., & Smith, A. (2014). Persistent cognitive changes in breast cancer patients 1 year following completion of chemotherapy. Journal of the International Neuropsychological Society: JINS, 20(4), 370–379. https://doi.org/10.1017/S1355617713001215.

  20. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, An International Journal, 29, 162–173. https://doi.org/10.1006/cbmr.1996.0014.

  21. Cuadra, M. B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J.-P. (2005). Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical Imaging, 24(12), 1548–1565. https://doi.org/10.1109/TMI.2005.857652.

  22. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., Caan, M., Douaud, G., et al. (2012). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Human Brain Mapping, 33(12), 2971–2983. https://doi.org/10.1002/hbm.21422.

  23. Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(3), 274–281.

  24. Deprez, S., Kesler, S. R., Saykin, A. J., Silverman, D. H. S., de Ruiter, M. B., & McDonald, B. C. (2018). International cognition and cancer task force recommendations for neuroimaging methods in the study of cognitive impairment in non-CNS cancer patients. Journal of the National Cancer Institute, 110(3), 223–231. https://doi.org/10.1093/jnci/djx285.

  25. Detry, M. A., & Ma, Y. (2016). Analyzing repeated measurements using mixed models. JAMA, 315(4), 407–408. https://doi.org/10.1001/jama.2015.19394.

  26. Dupont, S., Samson, Y., Van de Moortele, P.-F., Samson, S., Poline, J.-B., Adam, C., et al. (2001). Delayed verbal memory retrieval: a functional MRI study in epileptic patients with structural lesions of the left medial temporal lobe. NeuroImage, 14(5), 995–1003. https://doi.org/10.1006/nimg.2001.0908.

  27. Eichenbaum, H. (2017). Prefrontal-hippocampal interactions in episodic memory. Nature Reviews. Neuroscience, 18(9), 547–558. https://doi.org/10.1038/nrn.2017.74.

  28. Eustache, F., Desgranges, B., & Lalevée, C. (1998). [Clinical evaluation of memory]. Revue Neurologique, 154(Suppl 2), S18–S32.

  29. Falleti, M. G., Sanfilippo, A., Maruff, P., Weih, L., & Phillips, K.-A. (2005). The nature and severity of cognitive impairment associated with adjuvant chemotherapy in women with breast cancer: a meta-analysis of the current literature. Brain and Cognition, 59(1), 60–70. https://doi.org/10.1016/j.bandc.2005.05.001.

  30. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

  31. Franzmeier, N., Hartmann, J., Taylor, A. N. W., Araque-Caballero, M. Á., Simon-Vermot, L., Kambeitz-Ilankovic, L., et al. (2018). The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alzheimer’s Research & Therapy, 10(1), 28. https://doi.org/10.1186/s13195-018-0358-y.

  32. Fratiglioni, L., & Wang, H.-X. (2007). Brain reserve hypothesis in dementia. Journal of Alzheimer’s disease: JAD, 12(1), 11–22.

  33. Freret, T., Gaudreau, P., Schumann-Bard, P., Billard, J.-M., & Popa-Wagner, A. (2015). Mechanisms underlying the neuroprotective effect of brain reserve against late life depression. Journal of Neural Transmission (Vienna, Austria: 1996), 122(Suppl 1), S55–S61. https://doi.org/10.1007/s00702-013-1154-2.

  34. Frick, E., Tyroller, M., & Panzer, M. (2007). Anxiety, depression and quality of life of cancer patients undergoing radiation therapy: A cross-sectional study in a community hospital outpatient centre. European Journal of Cancer Care, 16(2), 130–136. https://doi.org/10.1111/j.1365-2354.2006.00720.x.

  35. Furlanetto, L. M., Mendlowicz, M. V., & Romildo Bueno, J. (2005). The validity of the Beck depression inventory-short form as a screening and diagnostic instrument for moderate and severe depression in medical inpatients. Journal of Affective Disorders, 86(1), 87–91. https://doi.org/10.1016/j.jad.2004.12.011.

  36. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36. https://doi.org/10.1006/nimg.2001.0786.

  37. Greicius, M. D., Krasnow, B., Boyett-Anderson, J. M., Eliez, S., Schatzberg, A. F., Reiss, A. L., & Menon, V. (2003). Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus, 13(1), 164–174. https://doi.org/10.1002/hipo.10064.

  38. Gueorguieva, R., & Krystal, J. H. (2004). Move over ANOVA: progress in analyzing repeated-measures data and its reflection in papers published in the archives of general psychiatry. Archives of General Psychiatry, 61(3), 310–317. https://doi.org/10.1001/archpsyc.61.3.310.

  39. Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., & Greicius, M. D. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(26), 8586–8594. https://doi.org/10.1523/JNEUROSCI.1868-09.2009.

  40. Hermelink, K., Untch, M., Lux, M. P., Kreienberg, R., Beck, T., Bauerfeind, I., & Münzel, K. (2007). Cognitive function during neoadjuvant chemotherapy for breast cancer: results of a prospective, multicenter, longitudinal study. Cancer, 109(9), 1905–1913. https://doi.org/10.1002/cncr.22610.

  41. Hindle, J. V., Martyr, A., & Clare, L. (2014). Cognitive reserve in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism & Related Disorders, 20(1), 1–7. https://doi.org/10.1016/j.parkreldis.2013.08.010.

  42. Hurria, A., Somlo, G., & Ahles, T. (2007). Renaming “chemobrain”. Cancer Investigation, 25(6), 373–377. https://doi.org/10.1080/07357900701506672.

  43. Inagaki, M., Matsuoka, Y., Sugahara, Y., Nakano, T., Akechi, T., Fujimori, M., et al. (2004). Hippocampal volume and first major depressive episode after cancer diagnosis in breast cancer survivors. The American Journal of Psychiatry, 161(12), 2263–2270. https://doi.org/10.1176/appi.ajp.161.12.2263.

  44. Jim, H. S. L., Phillips, K. M., Chait, S., Faul, L. A., Popa, M. A., Lee, Y.-H., et al. (2012). Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(29), 3578–3587. https://doi.org/10.1200/JCO.2011.39.5640.

  45. Joly, F., Giffard, B., Rigal, O., De Ruiter, M. B., Small, B. J., Dubois, M., et al. (2015). Impact of cancer and its treatments on cognitive function: advances in research from the Paris international cognition and cancer task force symposium and update since 2012. Journal of Pain and Symptom Management, 50(6), 830–841. https://doi.org/10.1016/j.jpainsymman.2015.06.019.

  46. Kalafat, M., Hugonot-Diener, L., & Poitrenaud, J. (2003). Standardisation et étalonnage français du “mini mental state”(MMS) version GRECO. Revue de Neuropsychologie, 13(2), 209–236 Accessed 2 June 2014.

  47. Kiyosawa, M., Inoue, C., Kawasaki, T., Tokoro, T., Ishii, K., Ohyama, M., et al. (1996). Functional neuroanatomy of visual object naming: a PET study. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie, 234(2), 110–115.

  48. Knight, R. G., Waal-Manning, H. J., & Spears, G. F. (1983). Some norms and reliability data for the state--trait anxiety inventory and the Zung self-rating depression scale. The British Journal of Clinical Psychology, 22(Pt 4), 245–249.

  49. Koerner, T. K., & Zhang, Y. (2017). Application of linear mixed-effects models in human neuroscience research: a comparison with Pearson correlation in two auditory electrophysiology studies. Brain Sciences, 7(3), 26. https://doi.org/10.3390/brainsci7030026.

  50. Koppelmans, V., de Ruiter, M. B., van der Lijn, F., Boogerd, W., Seynaeve, C., van der Lugt, A., et al. (2012). Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy. Breast Cancer Research and Treatment, 132(3), 1099–1106. https://doi.org/10.1007/s10549-011-1888-1.

  51. Krueger, C., & Tian, L. (2004). A comparison of the general linear mixed model and repeated measures ANOVA using a dataset with multiple missing data points. Biological Research for Nursing, 6(2), 151–157. https://doi.org/10.1177/1099800404267682.

  52. La Joie, R., Landeau, B., Perrotin, A., Bejanin, A., Egret, S., Pélerin, A., et al. (2014). Intrinsic connectivity identifies the hippocampus as a main crossroad between Alzheimer’s and semantic dementia-targeted networks. Neuron, 81(6), 1417–1428. https://doi.org/10.1016/j.neuron.2014.01.026.

  53. Lange, M., Giffard, B., Noal, S., Rigal, O., Kurtz, J.-E., Heutte, N., et al. (2014). Baseline cognitive functions among elderly patients with localised breast cancer. European Journal of Cancer (Oxford, England: 1990), 50(13), 2181–2189. https://doi.org/10.1016/j.ejca.2014.05.026.

  54. Lange, M., Heutte, N., Rigal, O., Noal, S., Kurtz, J.-E., Lévy, C., et al. (2016). Decline in cognitive function in older adults with early-stage breast cancer after adjuvant treatment. The Oncologist. https://doi.org/10.1634/theoncologist.2016-0014.

  55. Lepage, C., Smith, A. M., Moreau, J., Barlow-Krelina, E., Wallis, N., Collins, B., et al. (2014). A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. SpringerPlus, 3, 444. https://doi.org/10.1186/2193-1801-3-444.

  56. Lloyd, S. (1957). Least squares quantization in PCM’s bell telephone labs.

  57. López Zunini, R. A., Scherling, C., Wallis, N., Collins, B., Mackenzie, J., Bielajew, C., & Smith, A. M. (2012). Differences in verbal memory retrieval in breast cancer chemotherapy patients compared to healthy controls: a prospective fMRI study. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-012-9213-0.

  58. Lyon, D. E., Cohen, R., Chen, H., Kelly, D. L., Starkweather, A., Ahn, H.-C., & Jackson-Cook, C. K. (2016). The relationship of cognitive performance to concurrent symptoms, cancer- and cancer-treatment-related variables in women with early-stage breast cancer: a 2-year longitudinal study. Journal of Cancer Research and Clinical Oncology, 142(7), 1461–1474. https://doi.org/10.1007/s00432-016-2163-y.

  59. MacQueen, J., & others. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297). Oakland, CA, USA.

  60. McDonald, B. C., & Saykin, A. J. (2013). Alterations in brain structure related to breast cancer and its treatment: chemotherapy and other considerations. Brain Imaging and Behavior, 7(4), 374–387. https://doi.org/10.1007/s11682-013-9256-x.

  61. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Research and Treatment, 123(3), 819–828. https://doi.org/10.1007/s10549-010-1088-4.

  62. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30(20), 2500–2508. https://doi.org/10.1200/JCO.2011.38.5674.

  63. McDonald, B. C., Conroy, S. K., Smith, D. J., West, J. D., & Saykin, A. J. (2013). Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain, Behavior, and Immunity, 30(Suppl), S117–S125. https://doi.org/10.1016/j.bbi.2012.05.007.

  64. McLaren, M. E., Szymkowicz, S. M., Kirton, J. W., & Dotson, V. M. (2015). Impact of education on memory deficits in subclinical depression. Archives of Clinical Neuropsychology, 30(5), 387–393. https://doi.org/10.1093/arclin/acv038.

  65. Meng, X., & D’Arcy, C. (2012). Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One, 7(6), e38268. https://doi.org/10.1371/journal.pone.0038268.

  66. Menning, S., de Ruiter, M. B., Veltman, D. J., Koppelmans, V., Kirschbaum, C., Boogerd, W., et al. (2015). Multimodal MRI and cognitive function in patients with breast cancer prior to adjuvant treatment--the role of fatigue. NeuroImage. Clinical, 7, 547–554. https://doi.org/10.1016/j.nicl.2015.02.005.

  67. Morel, N., Dayan, J., Piolino, P., Viard, A., Allouache, D., Noal, S., et al. (2015). Emotional specificities of autobiographical memory after breast cancer diagnosis. Consciousness and Cognition, 35, 42–52.

  68. Nakano, T., Wenner, M., Inagaki, M., Kugaya, A., Akechi, T., Matsuoka, Y., et al. (2002). Relationship between distressing cancer-related recollections and hippocampal volume in cancer survivors. The American Journal of Psychiatry, 159(12), 2087–2093. https://doi.org/10.1176/appi.ajp.159.12.2087.

  69. Nudelman, K. N. H., McDonald, B. C., Wang, Y., Smith, D. J., West, J. D., O’Neill, D. P., et al. (2016). Cerebral perfusion and gray matter changes associated with chemotherapy-induced peripheral neuropathy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 34(7), 677–683. https://doi.org/10.1200/JCO.2015.62.1276.

  70. O’Farrell, E., MacKenzie, J., & Collins, B. (2013). Clearing the air: a review of our current understanding of “chemo fog”. Current Oncology Reports, 15(3), 260–269. https://doi.org/10.1007/s11912-013-0307-7.

  71. O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex (New York, N.Y.: 1991), 20(4), 953–965. https://doi.org/10.1093/cercor/bhp157.

  72. Pereira, S., Fontes, F., Sonin, T., Dias, T., Fragoso, M., Castro-Lopes, J. M., & Lunet, N. (2015). Neurological complications of breast cancer: a prospective cohort study. Breast (Edinburgh, Scotland), 24(5), 582–587. https://doi.org/10.1016/j.breast.2015.05.006.

  73. Pinheiro, J. C., & Bates, D. M. (2000). Linear mixed-effects models: Basic concepts and examples. In Mixed-effects models in S and S-PLUS (pp. 3–56). New York: Springer. https://doi.org/10.1007/0-387-22747-4_1.

  74. Quesnel, C., Savard, J., & Ivers, H. (2009). Cognitive impairments associated with breast cancer treatments: results from a longitudinal study. Breast Cancer Research and Treatment, 116(1), 113–123. https://doi.org/10.1007/s10549-008-0114-2.

  75. Rajapakse, J. C., Giedd, J. N., & Rapoport, J. L. (1997). Statistical approach to segmentation of single-channel cerebral MR images. IEEE Transactions on Medical Imaging, 16(2), 176–186. https://doi.org/10.1109/42.563663.

  76. Ramalho, M., Fontes, F., Ruano, L., Pereira, S., & Lunet, N. (2017). Cognitive impairment in the first year after breast cancer diagnosis: a prospective cohort study. Breast (Edinburgh, Scotland), 32, 173–178. https://doi.org/10.1016/j.breast.2017.01.018.

  77. Reitan, R. M. (1979). Trail making test: TMT. Göttingen: Testzentrale.

  78. Saykin, A. J., de Ruiter, M. B., McDonald, B. C., Deprez, S., & Silverman, D. H. S. (2013). Neuroimaging biomarkers and cognitive function in non-CNS cancer and its treatment: current status and recommendations for future research. Brain Imaging and Behavior, 7(4), 363–373. https://doi.org/10.1007/s11682-013-9283-7.

  79. Schagen, S. B., Das, E., & Vermeulen, I. (2012). Information about chemotherapy-associated cognitive problems contributes to cognitive problems in cancer patients. Psycho-Oncology, 21(10), 1132–1135. https://doi.org/10.1002/pon.2011.

  80. Schmidt, M. E., Semik, J., Habermann, N., Wiskemann, J., Ulrich, C. M., & Steindorf, K. (2016). Cancer related fatigue shows a stable association with diurnal cortisol dysregulation in breast cancer patients. Brain, Behavior, and Immunity, 52, 98–105. https://doi.org/10.1016/j.bbi.2015.10.005.

  81. Schnakenberg Martin, A. M., Bonfils, K. A., Davis, B. J., Smith, E. A., Schuder, K., & Lysaker, P. H. (2016). Compared to high and low cannabis use, moderate use is associated with fewer cognitive deficits in psychosis. Schizophrenia Research. Cognition, 6, 15–21. https://doi.org/10.1016/j.scog.2016.09.001.

  82. Signoret, J. L., & Benoit, N. (1991). [Examination and memory]. La Revue du Praticien, 41(10), 866–868.

  83. Souza, C. P., Oliveira, G. N., Foss, M. P., & Tumas, V. (2016). Cluster analysis of cognitive performance in a sample of patients with Parkinson’s disease. Dementia & Neuropsychologia, 10(4), 315–319. https://doi.org/10.1590/s1980-5764-2016dn1004010.

  84. Spielberger, C. D., & Sydeman, S. J. (1994). State-trait anxiety inventory and state-trait anger expression inventory.

  85. Stewart, A., Bielajew, C., Collins, B., Parkinson, M., & Tomiak, E. (2006). A meta-analysis of the neuropsychological effects of adjuvant chemotherapy treatment in women treated for breast cancer. The Clinical Neuropsychologist, 20(1), 76–89. https://doi.org/10.1080/138540491005875.

  86. Tohka, J., Zijdenbos, A., & Evans, A. (2004). Fast and robust parameter estimation for statistical partial volume models in brain MRI. NeuroImage, 23(1), 84–97. https://doi.org/10.1016/j.neuroimage.2004.05.007.

  87. Travis, S. G., Coupland, N. J., Hegadoren, K., Silverstone, P. H., Huang, Y., Carter, R., et al. (2016). Effects of cortisol on hippocampal subfields volumes and memory performance in healthy control subjects and patients with major depressive disorder. Journal of Affective Disorders, 201, 34–41. https://doi.org/10.1016/j.jad.2016.04.049.

  88. Vardy, J. (2009). Cognitive function in breast cancer survivors. Cancer Treatment and Research, 151, 387–419. https://doi.org/10.1007/978-0-387-75115-3_24.

  89. Viard, A., Desgranges, B., Eustache, F., & Piolino, P. (2012). Factors affecting medial temporal lobe engagement for past and future episodic events: an ALE meta-analysis of neuroimaging studies. Brain and Cognition, 80(1), 111–125. https://doi.org/10.1016/j.bandc.2012.05.004.

  90. Wechsler, D. (1997). WAIS-III, Wechsler adult intelligence scale: Administration and scoring manual. Psychological Corporation.

  91. Wefel, J. S., & Schagen, S. B. (2012). Chemotherapy-related cognitive dysfunction. Current Neurology and Neuroscience Reports, 12(3), 267–275. https://doi.org/10.1007/s11910-012-0264-9.

  92. Wefel, J. S., Kayl, A. E., & Meyers, C. A. (2004a). Neuropsychological dysfunction associated with cancer and cancer therapies: a conceptual review of an emerging target. British Journal of Cancer, 90(9), 1691–1696. https://doi.org/10.1038/sj.bjc.6601772.

  93. Wefel, J. S., Lenzi, R., Theriault, R., Buzdar, A. U., Cruickshank, S., & Meyers, C. A. (2004b). “Chemobrain” in breast carcinoma?: a prologue. Cancer, 101(3), 466–475. https://doi.org/10.1002/cncr.20393.

  94. Wefel, J. S., Saleeba, A. K., Buzdar, A. U., & Meyers, C. A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116(14), 3348–3356. https://doi.org/10.1002/cncr.25098.

  95. Wefel, J. S., Vardy, J., Ahles, T., & Schagen, S. B. (2011). International cognition and cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. The Lancet Oncology, 12(7), 703–708. https://doi.org/10.1016/S1470-2045(10)70294-1.

  96. Wiggs, C. L., Weisberg, J., & Martin, A. (1998). Neural correlates of semantic and episodic memory retrieval. Neuropsychologia, 37(1), 103–118. https://doi.org/10.1016/S0028-3932(98)00044-X.

  97. Zeitzer, J. M., Nouriani, B., Neri, E., & Spiegel, D. (2014). Correspondence of plasma and salivary cortisol patterns in women with breast cancer. Neuroendocrinology, 100(0), 153–161. https://doi.org/10.1159/000367925.

  98. Zheng, Y., Luo, J., Bao, P., Cai, H., Hong, Z., Ding, D., et al. (2014). Long-term cognitive function change among breast cancer survivors. Breast Cancer Research and Treatment, 146(3), 599–609. https://doi.org/10.1007/s10549-014-3044-1.

Download references

Acknowledgements

Authors would like to thank the clinical research department of the Centre François Baclesse (Caen; Dr. Clarisse, Mrs. Rieux), the medical oncology department of the Centre François Baclesse (Dr Delcambre, Dr. Ollivier, Dr. Berthet, Dr. Segura and Dr. Swisters) for their help in patient recruitment, and the participants for their active contribution to these results.

Funding

This work was supported by the ARC foundation – for cancer research (2017–2020), the association “Ligue contre la cancer” (both national and Calvados department), the association “Cancer du sein, parlons en” (2011), and the Cancéropôle Nord-Ouest.

Author information

Correspondence to Joy Perrier.

Ethics declarations

Conflict of interest

The authors report no financial interests or potential conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study. All procedures performed in the current study that involved human participants were approved and in accordance with the local ethical standards research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perrier, J., Viard, A., Levy, C. et al. Longitudinal investigation of cognitive deficits in breast cancer patients and their gray matter correlates: impact of education level. Brain Imaging and Behavior 14, 226–241 (2020). https://doi.org/10.1007/s11682-018-9991-0

Download citation

Keywords

  • Breast cancer
  • Cognition
  • Education level
  • Anxiety
  • Magnetic resonance imaging