Neural correlates of proactive and reactive inhibition of saccadic eye movements

  • Tobias Talanow
  • Anna-Maria Kasparbauer
  • Julia V. Lippold
  • Bernd Weber
  • Ulrich EttingerEmail author
Original Research


Although research on goal-directed, proactive inhibitory control (IC) and stimulus-driven, reactive IC is growing, no previous study has compared proactive IC in conditions of uncertainty with regard to upcoming inhibition to conditions of certain upcoming IC. Therefore, we investigated effects of certainty and uncertainty on behavior and blood oxygen level dependent (BOLD) signal in proactive and reactive IC. In two studies, healthy adults performed saccadic go/no-go and prosaccade/antisaccade tasks. The certainty manipulation had a highly significant behavioral effect in both studies, with inhibitory control being more successful under certain than uncertain conditions on both tasks (p ≤ 0.001). Saccadic go responses were significantly less efficient under conditions of uncertainty than certain responding (p < 0.001). Event-related functional magnetic resonance imaging (fMRI) (one study) revealed a dissociation of certainty- and uncertainty-related proactive inhibitory neural correlates in the go/no-go task, with lateral and medial prefrontal and occipital cortex showing stronger deactivations during uncertainty than during certain upcoming inhibition, and lateral parietal cortex being activated more strongly during certain upcoming inhibition than uncertainty or certain upcoming responding. In the antisaccade task, proactive BOLD effects arose due to stronger deactivations in uncertain response conditions of both tasks and before certain prosaccades than antisaccades. Reactive inhibition-related BOLD increases occurred in inferior parietal cortex and supramarginal gyrus (SMG) in the go/no-go task only. Proactive IC may imply focusing attention on the external environment for encoding salient or alerting events as well as inhibitory mechanisms that reduce potentially distracting neural processes. SMG and inferior parietal cortex may play an important role in both proactive and reactive IC of saccades.


Proactive inhibition Eye movements Antisaccade task Go/no-go task Event-related fMRI Reactive inhibition Go/no-go Antisaccade Eye tracking fMRI 



The authors would like to thank Bertalan Polner (Budapest University of Technology and Economics, Budapest) for his valuable contribution to a pilot of this study.


This study was funded by the DFG (Et 31/2–1).

Compliance with ethical standards

The study was approved by the ethics committee of the Department of Psychology at the University of Bonn and conducted in conformity with the Declaration of Helsinki.

Conflict of interest

The authors declare no conflict of interest.

Informed consent

All participants gave informed consent before participating in the study.

Supplementary material

11682_2018_9972_MOESM1_ESM.docx (39 kb)
ESM 1 (DOCX 39 kb)


  1. Abegg, M., Manoach, D. S., & Barton, J. J. S. (2011). Knowing the future: Partial foreknowledge effects on the programming of prosaccades and antisaccades. Vision Research, 51, 215–221.CrossRefGoogle Scholar
  2. Aichert, D. S., Wöstmann, N. M., Costa, A., Macare, C., Wenig, J. R., Möller, H., et al. (2012). Associations between trait impulsivity and prepotent response inhibition. Journal of Clinical and Experimental Neuropsychology, 34, 1016–1032.CrossRefGoogle Scholar
  3. Albares, M., Lio, G., Criaud, M., Anton, J.-L., Desmurget, M., & Boulinguez, P. (2014). The dorsal medial frontal cortex mediates automatic motor inhibition in uncertain contexts: Evidence from combined fMRI and EEG studies. Human Brain Mapping, 35, 5517–5531.CrossRefGoogle Scholar
  4. Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In Attention and Performance XV: Conscious and Nonconscious Information Processing. Cambridge, MA: The MIT Press.Google Scholar
  5. Anderson, E. J., Husain, M., & Sumner, P. (2008). Human intraparietal sulcus (IPS) and competition between exogenous and endogenous saccade plans. NeuroImage, 40, 838–851.CrossRefGoogle Scholar
  6. Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69, e55–e68.CrossRefGoogle Scholar
  7. Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. The Journal of Neuroscience, 26, 2424–2433.CrossRefGoogle Scholar
  8. Ballanger, B. (2009). Top-down control of saccades as part of a generalized model of proactive inhibitory control. Journal of Neurophsiology, 102, 2578–2580.CrossRefGoogle Scholar
  9. Bär, S., Hauf, M., Barton, J. J. S., & Abegg, M. (2015). The neural network of saccadic foreknowledge. Experimental Brain Research, 234, 409–418.CrossRefGoogle Scholar
  10. Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44–79.CrossRefGoogle Scholar
  11. Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a go/NoGo task. Clinical Neurophysiology, 112, 2224–2232.CrossRefGoogle Scholar
  12. Braver, T. S. (2012). The variable nature of cognitive control: A dual-mechanisms framework. Trends in Cognitive Sciences, 16, 106–113.CrossRefGoogle Scholar
  13. Brown, M. R. G., Goltz, H. C., Vilis, T., Ford, K. A., & Everling, S. (2006). Inhibition and generation of saccades: Rapid event-related fMRI of prosaccades, antisaccades, and nogo trials. NeuroImage, 33, 644–659.CrossRefGoogle Scholar
  14. Brown, M. R. G., Vilis, T., & Everling, S. (2008). Isolation of saccade inhibition processes: Rapid event-related fMRI of saccades and nogo trials. NeuroImage, 39, 793–804.CrossRefGoogle Scholar
  15. Cai, Y., Li, S., Liu, J., Li, D., Feng, Z., Wang, Q., et al. (2016). The role of the frontal and parietal cortex in proactive and reactive inhibitory control: A Transcranial direct current stimulation study. Journal of Cognitive Neuroscience, 28, 177–186.CrossRefGoogle Scholar
  16. Chang, B. J. (2015). Spatially and temporally predictive saccades and their neural correlates. Ontario, Canada: Queen’s University Kingston.Google Scholar
  17. Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y., & Konishi, S. (2009). Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. The Journal of Neuroscience, 29, 15870–15877.CrossRefGoogle Scholar
  18. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2 Rev ed.). Hillsdale: Lawrence Erlbaum Associates Inc.Google Scholar
  19. Congdon, E., Mumford, J. A., Cohend, J. R., Galvana, A., Aron, A. R., Xue, G., et al. (2011). Engagement of large-scale networks is related to individual differences in inhibitory control. Neuroimage, 53, 653–663.CrossRefGoogle Scholar
  20. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3, 201–215.CrossRefGoogle Scholar
  21. Corneil, B. D., & Munoz, D. P. (2014). Review overt responses during covert orienting. Neuron, 82, 1230–1243.CrossRefGoogle Scholar
  22. Cornelissen, F. W., Kimmig, H., Schira, M., Rutschmann, R. M., Maguire, R. P., Broerse, A., et al. (2002). Event-related fMRI responses in the human frontal eye fields in a randomized pro- and antisaccade task. Experimental Brain Research, 145, 270–274.CrossRefGoogle Scholar
  23. Criaud, M., & Boulinguez, P. (2013). Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neuroscience and Biobehavioral Reviews, 37, 11–23.CrossRefGoogle Scholar
  24. Curtis, C. E., & Connolly, J. D. (2008). Saccade preparation signals in the human frontal and parietal cortices. Journal of Neurophysiology, 99, 133–145.CrossRefGoogle Scholar
  25. Deary, I. J., Simonotto, E., Meyer, M., Marshall, A., Marshall, I., Goddard, N., & Wardlaw, J. M. (2004). The functional anatomy of inspection time: An event-related fMRI study. NeuroImage, 22, 1466–1479.CrossRefGoogle Scholar
  26. DeSouza, J. F. X., Menon, R. S., & Everling, S. (2003). Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related fMRI. Journal of Neurophysiology, 89, 1016–1023.CrossRefGoogle Scholar
  27. Elchlepp, H., Lavric, A., Chambers, C. D., & Verbruggen, F. (2016). Proactive inhibitory control: A general biasing account. Cognitive Psychology, 86, 27–61.CrossRefGoogle Scholar
  28. Ettinger, U., ffytche, D. H., Kumari, V., Kathmann, N., Reuter, B., Zelaya, F., & Williams, S. C. R. (2008). Decomposing the neural correlates of antisaccade eye movements using event-related FMRI. Cerebral Cortex, 18, 1148–1159.CrossRefGoogle Scholar
  29. Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999). ERP components in go/Nogo tasks and their relation to inhibition. Acta Psychologica, 101, 267–291.CrossRefGoogle Scholar
  30. Ford, K. A., Goltz, H. C., Brown, M. R. G., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related FMRI. Journal of Neurophysiology, 94, 429–440.CrossRefGoogle Scholar
  31. Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133, 101–135.CrossRefGoogle Scholar
  32. Friston, K. J., Penny, W. D., & Glaser, D. E. (2005). Conjunction revisited. NeuroImage, 25, 661–667.CrossRefGoogle Scholar
  33. Gagnon, D., Driscoll, G. A. O., Petrides, M., & Pike, G. B. (2002). The effect of spatial and temporal information on saccades and neural activity in oculomotor structures. Brain, 125, 123–139.CrossRefGoogle Scholar
  34. Geng, J. J., Ruff, C. C., & Driver, J. (2008). Saccades to a remembered location elicit spatially specific activation in human Retinotopic visual cortex. Journal of Cognitive Neuroscience, 21, 230–245.CrossRefGoogle Scholar
  35. Gitelman, D. R., Nobre, A. C., Parrish, T. B., Labar, K. S., Kim, Y., Meyer, J. R., & Mesulam, M. (1999). A large-scale distributed network for covert spatial attention further anatomical delineation based on stringent behavioural and cognitive controls. Brain, 122, 1093–1106.CrossRefGoogle Scholar
  36. Griffis, J. C., Elkhetali, A. S., Burge, W. K., Chen, R. H., & Visscher, K. M. (2015). Retinotopic patterns of background connectivity between V1 and fronto-parietal cortex are modulated by task demands. Frontiers in Human Neuroscience, 9(June), 1–14.Google Scholar
  37. Grosbras, M.-H., Leonards, U., Lobel, E., Poline, J.-B., LeBihan, D., & Berthoz, A. (2001). Human cortical networks for new and familiar sequences of saccades. Cerebral Cortex, 11, 936–945.CrossRefGoogle Scholar
  38. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685–694.CrossRefGoogle Scholar
  39. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. PNAS, 98, 4259–4264.CrossRefGoogle Scholar
  40. Hanes, D. P., & Schall, J. D. (1995). Countermanding saccades in macaque. Visual Neuroscience, 12, 929–937.CrossRefGoogle Scholar
  41. Hester, R. L., Murphy, K., Foxe, J. J., Foxe, D. M., Javitt, D. C., & Garavan, H. (2004). Predicting success: Patterns of cortical activation and deactivation prior to response inhibition. Journal of Cognitive Neuroscience, 16, 776–785.CrossRefGoogle Scholar
  42. Hughes, M. E., Budd, T. W., Fulham, W. R., Lancaster, S., Woods, W., Rossell, S. L., & Michie, P. T. (2014). Sustained brain activation supporting stop-signal task performance. The European Journal of Neuroscience, 39, 1363–1369.CrossRefGoogle Scholar
  43. Hutton, S. B. (2008). Cognitive control of saccadic eye movements. Brain and Cognition, 68, 327–340.CrossRefGoogle Scholar
  44. Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology, 43, 302–313.CrossRefGoogle Scholar
  45. Jaffard, M., Benraiss, A., Longcamp, M., Velay, J.-L., & Boulinguez, P. (2007). Cueing method biases in visual detection studies. Brain Research, 1179, 106–118.CrossRefGoogle Scholar
  46. Jaffard, M., Longcamp, M., Velay, J.-L., Anton, J.-L., Roth, M., Nazarian, B., & Boulinguez, P. (2008). Proactive inhibitory control of movement assessed by event-related fMRI. NeuroImage, 42, 1196–1206.CrossRefGoogle Scholar
  47. Jahfari, S., Stinear, C. M., Claffey, M., Verbruggen, F., & Aron, A. R. (2010). Responding with restraint: What are the neurocognitive mechanisms? Journal of Cognitive Neuroscience, 22, 1479–1492.CrossRefGoogle Scholar
  48. Jamadar, S. D., Fielding, J., & Egan, G. F. (2013). Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-patietal regions and cerebellum during antisaccades and prosacaades. Frontiers in Psychology, 4, 749.CrossRefGoogle Scholar
  49. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751–761.CrossRefGoogle Scholar
  50. Laidlaw, K. E. W., Foulsham, T., Kuhn, G., & Kingstone, A. (2011). Potential social interactions are important to social attention. PNAS, 108(14), 5548–5553.CrossRefGoogle Scholar
  51. Laurienti, P. J., Burdette, J. H., Wallace, M. T., Yen, Y.-F., Field, A. S., & Stein, B. E. (2002). Deactivation of sensory-specific cortex by cross-modal stimuli. Journal of Cognitive Neuroscience, 143, 420–429.CrossRefGoogle Scholar
  52. Lavric, A., Pizzagalli, D. a., & Forstmeier, S. (2004). When “go” and “nogo” are equally frequent: ERP components and cortical tomography. The European Journal of Neuroscience, 20, 2483–2488.CrossRefGoogle Scholar
  53. Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15, 1028–1038.CrossRefGoogle Scholar
  54. Lepsien, J., & Pollmann, S. (2002). Covert reorienting and inhibition of return: An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 127–144.CrossRefGoogle Scholar
  55. Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences, 6, 9–16.CrossRefGoogle Scholar
  56. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19, 1233–1239.CrossRefGoogle Scholar
  57. Mangun, G. R., Buonocore, M. H., Girelli, M., & Jha, A. P. (1998). ERP and fMRI measures of visual spatial selective attention. Human Brain Mapping, 389, 383–389.CrossRefGoogle Scholar
  58. Mayr, U., & Kliegl, R. (2003). Differential effects of cue changes and task changes on task-set selection costs. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 362–372.PubMedGoogle Scholar
  59. McDowell, J. E., Dyckman, K. A., Austin, B., & Clementz, B. A. (2008). Neurophysiology and Neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain and Cognition, 68, 255–270.CrossRefGoogle Scholar
  60. Medendorp, W. P., Goltz, H. C., & Vilis, T. (2005). Remapping the remembered target location for anti-saccades in human posterior parietal cortex. Journal of Neurophysiology, 94, 734–740.CrossRefGoogle Scholar
  61. Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a go/NoGo response inhibition task. Human Brain Mapping, 143, 131–143.CrossRefGoogle Scholar
  62. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and Diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.CrossRefGoogle Scholar
  63. Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., & Husain, M. (2003). The anatomy of visual neglect. Brain, 126, 1986–1997.CrossRefGoogle Scholar
  64. Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews. Neuroscience, 5, 218–228.CrossRefGoogle Scholar
  65. Neggers, S. F. W., Diepen, R. M. Van, Zandbelt, B. B., Vink, M., Mandl, R. C. W., & Gutteling, T. P. (2012). A functional and structural investigation of the human fronto-basal volitional saccade network. PLoS One, 7(1), e29517.CrossRefGoogle Scholar
  66. Perry, R. J., & Zeki, S. (2000). The neurology of saccades and covert shifts in spatial attention: An event-related fMRI study. Brain, 123, 2273–2288.CrossRefGoogle Scholar
  67. Petit, L., Dubois, S., Tzourio, N., Dejardin, S., Crivello, F., Michel, C., et al. (1999). PET study of the human foveal fixation system. Human Brain Mapping, 8, 28–43.CrossRefGoogle Scholar
  68. Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2, 67–70.CrossRefGoogle Scholar
  69. Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience, 4, 1863–1874.CrossRefGoogle Scholar
  70. Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320–341.CrossRefGoogle Scholar
  71. Raemaekers, M., Ramsey, N. F., Vink, M., van den Heuvel, M. P., & Kahn, R. S. (2006a). Brain activation during Antisaccades in unaffected relatives of schizophrenic patients. Biological Psychiatry, 59, 530–535.CrossRefGoogle Scholar
  72. Raemaekers, M., Vink, M., Heuvel, M. P., van den Kahn, R. S., & Ramsey, N. F. (2006b). Effects of aging on BOLD fMRI during Prosaccades and Antisaccades. Journal of Cognitive Neuroscience, 18, 594–603.CrossRefGoogle Scholar
  73. Sharp, D. J., Bonnelle, V., De Boissezon, X., Beckmann, C. F., James, S. G., Patel, M. C., & Mehta, M. A. (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. PNAS, 107, 6106–6111.CrossRefGoogle Scholar
  74. Simó, L. S., Krisky, C. M., & Sweeney, J. A. (2005). Functional neuroanatomy of anticipatory behavior: Dissociation between sensory-driven and memory-driven systems. Cerebral Cortex, 15, 1982–1991.CrossRefGoogle Scholar
  75. Singh-Curry, V., & Husain, M. (2009). Neuropsychologia the functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia, 47, 1434–1448.CrossRefGoogle Scholar
  76. Smittenaar, P., Guitart-Masip, M., Lutti, A., & Dolan, R. J. (2013). Preparing for selective inhibition within frontostriatal loops. The Journal of Neuroscience, 33, 18087–18097.CrossRefGoogle Scholar
  77. Smyrnis, N., Evdokimidis, I., Stefanis, N. C., Constantinidis, T. S., Avramopoulos, D., Theleritis, C., et al. (2002). The antisaccade task in a sample of 2,006 young males. II. Effects of task parameters. Experimental Brain Research, 147, 53–63.CrossRefGoogle Scholar
  78. Steele, V. R., Aharoni, E., Munro, G. E., Calhoun, V. D., Nyalakanti, P., Stevens, M. C., et al. (2013). A large scale (N=102) functional neuroimaging study of response inhibition in a go/NoGo task. Behavioural Brain Research, 256, 529–536.CrossRefGoogle Scholar
  79. Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9, 379–385.CrossRefGoogle Scholar
  80. Tomasi, D., Ernst, T., Caparelli, E. C., & Chang, L. (2006). Common deactivation patterns during working memory and visual attention tasks: An intra- subject fMRI study at 4 tesla. Human Brain Mapping, 705, 694–705.CrossRefGoogle Scholar
  81. Van Belle, J., Vink, M., Durston, S., & Zandbelt, B. B. (2014). Common and unique neural networks for proactive and reactive response inhibition revealed by independent component analysis of functional MRI data. NeuroImage, 103, 65–74.CrossRefGoogle Scholar
  82. Verbruggen, F., & Logan, G. D. (2009). Proactive adjustments of response strategies in the stop-signal paradigm. Journal of Experimental Psychology: Human Perception and Performance, 35, 835–854.PubMedGoogle Scholar
  83. Vink, M., Kaldewaij, R., Zandbelt, B. B., Pas, P., & du Plessis, S. (2015). The role of stop-signal probability and expectation in proactive inhibition. The European Journal of Neuroscience, 41, 1086–1094.CrossRefGoogle Scholar
  84. White, C. N., Congdon, E., Mumford, J. A., Karlsgodt, K. H., Sabb, F. W., Freimer, N. B., et al. (2014). Decomposing decision components in the stop-signal task: A model-based approach to individual differences in inhibitory control. Journal of Cognitive Neuroscience, 26, 1601–1614.CrossRefGoogle Scholar
  85. Yeung, N., Nystrom, L. E., Aronson, J. A., & Cohen, J. D. (2006). Between-task competition and cognitive control in task switching. The Journal of Neuroscience, 26, 1429–1438.CrossRefGoogle Scholar
  86. Zandbelt, B. B., & Vink, M. (2010). On the role of the striatum in response inhibition. PLoS One, 5(11), e13848.CrossRefGoogle Scholar
  87. Zandbelt, B. B., Bloemendaal, M., Neggers, S. F. W., Kahn, R. S., & Vink, M. (2013). Expectations and violations: Delineating the neural network of proactive inhibitory control. Human Brain Mapping, 34, 2015–2024.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication 2018

Authors and Affiliations

  • Tobias Talanow
    • 1
  • Anna-Maria Kasparbauer
    • 1
  • Julia V. Lippold
    • 1
  • Bernd Weber
    • 2
    • 3
  • Ulrich Ettinger
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of BonnBonnGermany
  2. 2.Department of EpileptologyUniversity Hospital BonnBonnGermany
  3. 3.Centre for Economics and NeuroscienceUniversity of BonnBonnGermany

Personalised recommendations