Advertisement

Brain Imaging and Behavior

, Volume 13, Issue 5, pp 1474–1485 | Cite as

Brain structural basis of individual variability in dream recall frequency

  • Shuqin Zhou
  • Jing Xu
  • Zihui Su
  • Yuezhen Li
  • Yan Shao
  • Hongqiang Sun
  • Huaiqiu Zhu
  • Qihong ZouEmail author
  • Jia-Hong GaoEmail author
Original Research

Abstract

Recent neuroimaging studies have indicated that inter-individual variability in dream recall frequency (DRF) is associated with both resting-state regional cerebral blood flow and task-induced brain activations. However, the brain structure underpinning this inter-individual variability in DRF remains unclear. The aim of the current study is to investigate the relationship between brain structural characteristics and DRF. We collected both T1-weighted and diffusion tensor magnetic resonance imaging data from 43 healthy volunteers. DRF was obtained from a two-week sleep diary with a subjective report of dream recall upon waking every morning. General linear model analysis was used to evaluate the relationship between brain structural characteristics (cortical volume and white matter integrity) and DRF. Not only the cortical volume of the medial portion of the right fusiform gyrus and parahippocampal gyrus but also the fractional anisotropy of white matter fibers connected to these regions were significantly negatively correlated with DRF, and these relationships were not modulated by a regular sleep. These findings provide direct evidence that brain structural characteristics are associated with inter-individual variability in DRF and may help us to better understand the structural mechanisms in the brain underlying dream recall.

Keywords

Dream recall frequency Magnetic resonance imaging Cortical volume White matter tractography 

Notes

Acknowledgements

This work was supported by National Key Research and Development Program of China (2017YFC0108900, 2017YFC0108901), China’s National Strategic Basic Research Program (“973”) grant (2015CB856400), National Natural Science Foundation of China (81871427, 81671765, 81430037, 81727808, 81790650, 81790651, 81571297 and 31421003), Beijing Municipal Natural Science Foundation (7172121), Beijing Municipal Science & Technology Commission (Z161100002616006 and Z171100000117012), Shenzhen Peacock Plan (KQTD2015033016104926), Guangdong Pearl River Talents Plan Innovative and Entrepreneurial Team (2016ZT06S220), Shenzhen Science and Technology Research Funding Program (JCYJ20170412164413575). We thank National Center for Protein Sciences at Peking University in Beijing, China, for assistance with MRI data acquisition and data analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Aguirre, G. K., Detre, J. A., Alsop, D. C., & D'Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6(6), 823–829.CrossRefGoogle Scholar
  2. Aserinsky, E., & Kleitman, N. (1953). Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 118(3062), 273–274.  https://doi.org/10.1126/science.118.3062.273.CrossRefGoogle Scholar
  3. Balkin, T. J., Braun, A. R., Wesensten, N. J., Jeffries, K., Varga, M., Baldwin, P., et al. (2002). The process of awakening: A PET study of regional brain activity patterns mediating the re-establishment of alertness and consciousness. Brain, 125, 2308–2319.  https://doi.org/10.1093/brain/awf228.CrossRefGoogle Scholar
  4. Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34(1), 144–155.  https://doi.org/10.1016/j.neuroimage.2006.09.018.CrossRefGoogle Scholar
  5. Braun, A. R., Balkin, T. J., Wesensten, N. J., Gwadry, F., Carson, R. E., Varga, M., et al. (1998). Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science, 279(5347), 91–95.CrossRefGoogle Scholar
  6. Buchmann, A., Ringli, M., Kurth, S., Schaerer, M., Geiger, A., Jenni, O. G., & Huber, R. (2011). EEG sleep slow-wave activity as a mirror of cortical maturation. Cerebral Cortex, 21(3), 607–615.  https://doi.org/10.1093/cercor/bhq129.CrossRefGoogle Scholar
  7. Buckelmuller, J., Landolt, H. P., Stassen, H. H., & Achermann, P. (2006). Trait-like individual differences in the human sleep electroencephalogram. Neuroscience, 138(1), 351–356.  https://doi.org/10.1016/j.neuroscience.2005.11.005.CrossRefGoogle Scholar
  8. Buysse, D. J., Reynolds 3rd, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213.CrossRefGoogle Scholar
  9. Chow, H. M., Horovitz, S. G., Carr, W. S., Picchioni, D., Coddington, N., Fukunaga, M., et al. (2013). Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10300–10305.  https://doi.org/10.1073/pnas.1217691110.CrossRefGoogle Scholar
  10. Cipolli, C., Ferrara, M., De Gennaro, L., & Plazzi, G. (2017). Beyond the neuropsychology of dreaming: Insights into the neural basis of dreaming with new techniques of sleep recording and analysis. Sleep Medicine Reviews, 35, 8–20.  https://doi.org/10.1016/j.smrv.2016.07.005.CrossRefGoogle Scholar
  11. Cirelli, C. (2009). The genetic and molecular regulation of sleep: From fruit flies to humans. Nature Reviews. Neuroscience, 10(8), 549–560.  https://doi.org/10.1038/nrn2683.CrossRefGoogle Scholar
  12. Cohen, D. B. (1979). Sleep and dreaming: Origins, nature and functions. New York: Pregamon Press.Google Scholar
  13. Cory, T. L., & Ormiston, D. W. (1975). Predicting the frequency of dream recall. Journal of Abnormal Psychology, 84(3), 261–266.CrossRefGoogle Scholar
  14. Dang-Vu, T. T., Schabus, M., Desseilles, M., Sterpenich, V., Bonjean, M., & Maquet, P. (2010). Functional neuroimaging insights into the physiology of human sleep. Sleep, 33(12), 1589–1603.CrossRefGoogle Scholar
  15. De Gennaro, L., Cipolli, C., Cherubini, A., Assogna, F., Cacciari, C., Marzano, C., et al. (2011). Amygdala and hippocampus volumetry and diffusivity in relation to dreaming. Human Brain Mapping, 32(9), 1458–1470.  https://doi.org/10.1002/hbm.21120.CrossRefGoogle Scholar
  16. De Gennaro, L., Lanteri, O., Piras, F., Scarpelli, S., Assogna, F., Ferrara, M., et al. (2016). Dopaminergic system and dream recall: An MRI study in Parkinson's disease patients. Human Brain Mapping, 37(3), 1136–1147.  https://doi.org/10.1002/hbm.23095.CrossRefGoogle Scholar
  17. Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11(9), 379–386.  https://doi.org/10.1016/j.tics.2007.08.001.CrossRefGoogle Scholar
  18. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297–302.CrossRefGoogle Scholar
  19. Eichenlaub, J. B., Bertrand, O., Morlet, D., & Ruby, P. (2014a). Brain reactivity differentiates subjects with high and low dream recall frequencies during both sleep and wakefulness. Cerebral Cortex, 24(5), 1206–1215.  https://doi.org/10.1093/cercor/bhs388.CrossRefGoogle Scholar
  20. Eichenlaub, J. B., Nicolas, A., Daltrozzo, J., Redoute, J., Costes, N., & Ruby, P. (2014b). Resting brain activity varies with dream recall frequency between subjects. Neuropsychopharmacology, 39(7), 1594–1602.  https://doi.org/10.1038/npp.2014.6.CrossRefGoogle Scholar
  21. Ellenbogen, J. M., Hulbert, J. C., Stickgold, R., Dinges, D. F., & Thompson-Schill, S. L. (2006). Interfering with theories of sleep and memory: Sleep, declarative memory, and associative interference. Current Biology, 16(13), 1290–1294.  https://doi.org/10.1016/j.cub.2006.05.024.CrossRefGoogle Scholar
  22. Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598–601.  https://doi.org/10.1038/33402.CrossRefGoogle Scholar
  23. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055.  https://doi.org/10.1073/pnas.200033797.CrossRefGoogle Scholar
  24. Foulkes, W. D. (1962). Dream reports from different stages of sleep. Journal of Abnormal and Social Psychology, 65, 14–25.CrossRefGoogle Scholar
  25. Goodenough, D. R., Lewis, H. B., Shapiro, A., Jaret, L., & Sleser, I. (1965). Dream reporting following abrupt and gradual awakenings from different types of sleep. Journal of Personality and Social Psychology, 2, 170–179.CrossRefGoogle Scholar
  26. Greve, D. N., & Fischl, B. (2018). False positive rates in surface-based anatomical analysis. Neuroimage, 171, 6–14.  https://doi.org/10.1016/j.neuroimage.2017.12.072.CrossRefGoogle Scholar
  27. Hagler Jr., D. J., Saygin, A. P., & Sereno, M. I. (2006). Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage, 33(4), 1093–1103.  https://doi.org/10.1016/j.neuroimage.2006.07.036.CrossRefGoogle Scholar
  28. Hobson, J. A., & Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nature Reviews. Neuroscience, 3(9), 679–693.  https://doi.org/10.1038/nrn915.CrossRefGoogle Scholar
  29. Hobson, J. A., Pace-Schott, E. F., & Stickgold, R. (2000). Dreaming and the brain: Toward a cognitive neuroscience of conscious states. The Behavioral and Brain Sciences, 23(6), 793–842 discussion 904-1121.CrossRefGoogle Scholar
  30. Hu, P., Stylos-Allan, M., & Walker, M. P. (2006). Sleep facilitates consolidation of emotional declarative memory. Psychological Science, 17(10), 891–898.  https://doi.org/10.1111/j.1467-9280.2006.01799.x.CrossRefGoogle Scholar
  31. Iber, C., Ancoli-Israel, S. S., Chesson, A., & Quan, S. F. (2007). The AASM manual for the scoring of sleep and associated events: Rules, terminology, and technical specifications. Westchester, IL.Google Scholar
  32. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.CrossRefGoogle Scholar
  33. Le Bon, O., Staner, L., Hoffmann, G., Dramaix, M., San Sebastian, I., Murphy, J. R., et al. (2001). The first-night effect may last more than one night. Journal of Psychiatric Research, 35(3), 165–172.CrossRefGoogle Scholar
  34. Lorenzo, J. L., & Barbanoj, M. J. (2002). Variability of sleep parameters across multiple laboratory sessions in healthy young subjects: the "very first night effect". Psychophysiology, 39(4), 409–413.  https://doi.org/10.1017/S0048577202394010.CrossRefGoogle Scholar
  35. Maquet, P., & Ruby, P. (2004). Psychology: Insight and the sleep committee. Nature, 427(6972), 304–305.  https://doi.org/10.1038/427304a.CrossRefGoogle Scholar
  36. Maquet, P., Peters, J., Aerts, J., Delfiore, G., Degueldre, C., Luxen, A., et al. (1996). Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 383(6596), 163–166.  https://doi.org/10.1038/383163a0.CrossRefGoogle Scholar
  37. Marzano, C., Ferrara, M., Mauro, F., Moroni, F., Gorgoni, M., Tempesta, D., et al. (2011). Recalling and forgetting dreams: Theta and alpha oscillations during sleep predict subsequent dream recall. The Journal of Neuroscience, 31(18), 6674–6683.  https://doi.org/10.1523/JNEUROSCI.0412-11.2011.CrossRefGoogle Scholar
  38. Megevand, P., Groppe, D. M., Goldfinger, M. S., Hwang, S. T., Kingsley, P. B., Davidesco, I., et al. (2014). Seeing scenes: Topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. The Journal of Neuroscience, 34(16), 5399–5405.  https://doi.org/10.1523/JNEUROSCI.5202-13.2014.CrossRefGoogle Scholar
  39. Milner, B. (1968). Visual recognition and recall after right temporal-lobe excision in man. Neuropsychologia, 6(3), 191–209.  https://doi.org/10.1016/0028-3932(68)90019-5.CrossRefGoogle Scholar
  40. Newell, J., Mairesse, O., Verbanck, P., & Neu, D. (2012). Is a one-night stay in the lab really enough to conclude? First-night effect and night-to-night variability in polysomnographic recordings among different clinical population samples. Psychiatry Research, 200(2–3), 795–801.  https://doi.org/10.1016/j.psychres.2012.07.045.CrossRefGoogle Scholar
  41. Nielsen, T. A. (1999). Mentation during sleep: The NREM/REM distinction. Handbook of behavioral state control: molecular and celluar mechanisms (pp. 101–128). Boca Raton: CRC Press.Google Scholar
  42. Nielsen, T. A. (2000). A review of mentation in REM and NREM sleep: "covert" REM sleep as a possible reconciliation of two opposing models. The Behavioral and Brain Sciences, 23(6), 851–866 discussion 904-1121.CrossRefGoogle Scholar
  43. Nir, Y., & Tononi, G. (2010). Dreaming and the brain: From phenomenology to neurophysiology. Trends in Cognitive Sciences, 14(2), 88–100.  https://doi.org/10.1016/j.tics.2009.12.001.CrossRefGoogle Scholar
  44. Pace-Schott, E. F., & Hobson, J. A. (1998). The neuropsychology of dreams: A clinico-anatomical study. Trends in Cognitive Sciences, 2(5), 199–200.CrossRefGoogle Scholar
  45. Parvizi, J., Jacques, C., Foster, B. L., Witthoft, N., Rangarajan, V., Weiner, K. S., et al. (2012). Electrical stimulation of human fusiform face-selective regions distorts face perception. The Journal of Neuroscience, 32(43), 14915–14920.  https://doi.org/10.1523/JNEUROSCI.2609-12.2012.CrossRefGoogle Scholar
  46. Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9(4), 534–547.  https://doi.org/10.1162/jocn.1997.9.4.534.CrossRefGoogle Scholar
  47. Scarpelli, S., D'Atri, A., Gorgoni, M., Ferrara, M., & De Gennaro, L. (2015). EEG oscillations during sleep and dream recall: State- or trait-like individual differences? Frontiers in Psychology, 6, 605.  https://doi.org/10.3389/fpsyg.2015.00605.Google Scholar
  48. Scarpelli, S., D'Atri, A., Mangiaruga, A., Marzano, C., Gorgoni, M., Schiappa, C., et al. (2017). Predicting dream recall: EEG activation during NREM sleep or shared mechanisms with wakefulness? Brain Topography, 30(5), 629–638.  https://doi.org/10.1007/s10548-017-0563-1.CrossRefGoogle Scholar
  49. Schredl, M. (1999). Dream recall: Research, clinical implications and future directions. Sleep Hypnosis, 1, 72–81.Google Scholar
  50. Schredl, M. (2004). Reliability and stability of a dream recall frequency scale. Perceptual and Motor Skills, 98(3 Pt 2), 1422–1426.  https://doi.org/10.2466/pms.98.3c.1422-1426.CrossRefGoogle Scholar
  51. Schredl, M., Wittmann, L., Ciric, P., & Gotz, S. (2003). Factors of home dream recall: A structural equation model. Journal of Sleep Research, 12(2), 133–141.CrossRefGoogle Scholar
  52. Siclari, F., Baird, B., Perogamvros, L., Bernardi, G., LaRocque, J. J., Riedner, B., et al. (2017). The neural correlates of dreaming. Nature Neuroscience, 20(6), 872–878.  https://doi.org/10.1038/nn.4545.CrossRefGoogle Scholar
  53. Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437(7063), 1264–1271.  https://doi.org/10.1038/nature04285.CrossRefGoogle Scholar
  54. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl 1), S208–S219.  https://doi.org/10.1016/j.neuroimage.2004.07.051.CrossRefGoogle Scholar
  55. Solms, M. (2000). Dreaming and REM sleep are controlled by different brain mechanisms. The Behavioral and Brain Sciences, 23(6), 843–850 discussion 904-1121.CrossRefGoogle Scholar
  56. Spiegel, K., Leproult, R., & Van Cauter, E. (1999). Impact of sleep debt on metabolic and endocrine function. Lancet, 354(9188), 1435–1439.  https://doi.org/10.1016/S0140-6736(99)01376-8.CrossRefGoogle Scholar
  57. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195–231.CrossRefGoogle Scholar
  58. Stickgold, R., James, L., & Hobson, J. A. (2000). Visual discrimination learning requires sleep after training. Nature Neuroscience, 3(12), 1237–1238.  https://doi.org/10.1038/81756.CrossRefGoogle Scholar
  59. Taub, J. M. (1971). Dreams recalled spontaneously following afternoon naps and nocturnal sleep. Journal of Abnormal Psychology, 78(2), 229–231.CrossRefGoogle Scholar
  60. Teipel, S. J., Pogarell, O., Meindl, T., Dietrich, O., Sydykova, D., Hunklinger, U., et al. (2009). Regional networks underlying interhemispheric connectivity: an EEG and DTI study in healthy ageing and amnestic mild cognitive impairment. Human Brain Mapping, 30(7), 2098–2119.  https://doi.org/10.1002/hbm.20652.CrossRefGoogle Scholar
  61. Trotti, L. M. (2017). Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness. Sleep Medicine Reviews, 35, 76–84.  https://doi.org/10.1016/j.smrv.2016.08.005.CrossRefGoogle Scholar
  62. Virley, D., Ridley, R. M., Sinden, J. D., Kershaw, T. R., Harland, S., Rashid, T., et al. (1999). Primary CA1 and conditionally immortal MHP36 cell grafts restore conditional discrimination learning and recall in marmosets after excitotoxic lesions of the hippocampal CA1 field. Brain, 122(Pt 12), 2321–2335.CrossRefGoogle Scholar
  63. Walker, M. P., & Stickgold, R. (2006). Sleep, memory, and plasticity. Annual Review of Psychology, 57, 139–166.  https://doi.org/10.1146/annurev.psych.56.091103.070307.CrossRefGoogle Scholar
  64. Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R. (2002). Practice with sleep makes perfect: Sleep-dependent motor skill learning. Neuron, 35(1), 205–211.CrossRefGoogle Scholar
  65. Wamsley, E. J. (2013). Dreaming, waking conscious experience, and the resting brain: Report of subjective experience as a tool in the cognitive neurosciences. Frontiers in Psychology, 4, 637.  https://doi.org/10.3389/fpsyg.2013.00637.CrossRefGoogle Scholar
  66. Wamsley, E. J. (2014). Dreaming and offline memory consolidation. Current Neurology and Neuroscience Reports, 14(3), 433.  https://doi.org/10.1007/s11910-013-0433-5.CrossRefGoogle Scholar
  67. Wamsley, E. J., Tucker, M., Payne, J. D., Benavides, J. A., & Stickgold, R. (2010). Dreaming of a learning task is associated with enhanced sleep-dependent memory consolidation. Current Biology, 20(9), 850–855.  https://doi.org/10.1016/j.cub.2010.03.027.CrossRefGoogle Scholar
  68. Wamsley, E. J., Nguyen, N. D., Tucker, M. A., Olsen, A., & Stickgold, R. (2012). Eeg correlates of overnight memory consolidation in a virtual navigation task. Sleep, 35, A86–A86.Google Scholar
  69. Weibert, K., & Andrews, T. J. (2015). Activity in the right fusiform face area predicts the behavioural advantage for the perception of familiar faces. Neuropsychologia, 75, 588–596.  https://doi.org/10.1016/j.neuropsychologia.2015.07.015.CrossRefGoogle Scholar
  70. Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2007). Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping, 28(3), 228–237.  https://doi.org/10.1002/hbm.20273.CrossRefGoogle Scholar
  71. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381–397.  https://doi.org/10.1016/j.neuroimage.2014.01.060.CrossRefGoogle Scholar
  72. Xu, M. Z., Zhang, Y., von Deneen, K. M., Zhu, H. Q., & Gao, J. H. (2017). Brain structural alterations in obese children with and without Prader-Willi syndrome. Human Brain Mapping, 38(8), 4228–4238.  https://doi.org/10.1002/hbm.23660.CrossRefGoogle Scholar
  73. Zou, Q., Zhou, S., Xu, J., Su, Z., Li, Y., Ma, Y., et al. (2018). Dissociated resting-state functional networks between the dream recall frequency and REM sleep percentage. Neuroimage, 174, 248–256.  https://doi.org/10.1016/j.neuroimage.2018.03.015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shuqin Zhou
    • 1
    • 2
  • Jing Xu
    • 1
    • 3
  • Zihui Su
    • 1
    • 3
  • Yuezhen Li
    • 4
    • 5
  • Yan Shao
    • 4
    • 5
  • Hongqiang Sun
    • 4
    • 5
  • Huaiqiu Zhu
    • 2
  • Qihong Zou
    • 1
    Email author
  • Jia-Hong Gao
    • 1
    • 3
    • 6
    • 7
    Email author
  1. 1.Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  2. 2.Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of PhysicsPeking UniversityBeijingChina
  4. 4.Peking University Sixth Hospital (Institute of Mental Health)BeijingChina
  5. 5.National Clinical Research Center for Mental Disorders & Key Laboratory of Mental HealthMinistry of Health (Peking University)BeijingChina
  6. 6.McGovern Institute for Brain ResearchPeking UniversityBeijingChina
  7. 7.Shenzhen Institute of NeuroscienceShenzhenChina

Personalised recommendations