Advertisement

Brain Imaging and Behavior

, Volume 13, Issue 5, pp 1468–1473 | Cite as

Predicting trait-like individual differences in fear of pain in the healthy state using gray matter volume

  • Xiaowan Wang
  • Chris Baeken
  • Mengxia Fang
  • Jiang Qiu
  • Hong Chen
  • Guo-Rong WuEmail author
Original Research

Abstract

Fear of pain (FOP) can be considered as a product of evolution from overstated negative interpretations of pain and sometimes may cause more damage than the actual pain itself. While trait-like measures of FOP have emerged as predictors for the inception and development of chronic pain, its neural underpinnings are not well understood. To investigate the relationship between gray matter volumes (GMV) and trait-like individual differences in FOP, we analyzed structural magnetic resonance imaging data in a sample of healthy young adults. Regression analysis results showed that individuals with higher FOP scores displayed higher GMV in brain regions important for the regulation of pain and fear. These brain areas include the pregenual anterior cingulate cortex (ACC), the anterior part of the dorsal ACC, the dorsomedial prefrontal cortex, and the adjacent pre-supplementary motor area. Furthermore, cross-validation analysis confirmed that the identified regional GMV offered a reliable neural signature of trait-like FOP. Our findings shed more light on the neuroanatomical architecture of FOP in currently pain-free people, which may be helpful to guide early interventions to prevent FOP from becoming chronic.

Keywords

Fear of pain Gray matter volume Anterior cingulate cortex Dorsomedial prefrontal cortex Cross-validation 

Notes

Funding

G-R.W was supported by the National Natural Science Foundation of China (Grant No. 61876156, 61403312), and the Fundamental Research Funds for the Central Universities (Grant No. SWU116074). This work was also supported by a grant of het Fonds Wetenschappelijk Onderzoek Rode Neuzen G0F4617N.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

This study was approved by the Institutional Human Participants Review Board of Southwest University Imaging Center for Brain Research and all participants gave written informed consent prior to their participation.

Supplementary material

11682_2018_9960_MOESM1_ESM.pdf (163 kb)
ESM 1 (PDF 163 kb)

References

  1. Abrams, M. P., Carleton, R. N., & Asmundson, G. J. (2007). An exploration of the psychometric properties of the PASS-20 with a nonclinical sample. The Journal of Pain, 8(11), 879–886.Google Scholar
  2. Abrams, D. A., Chen, T., Odriozola, P., Cheng, K. M., Baker, A. E., Padmanabhan, A., Ryali, S., Kochalka, J., Feinstein, C., & Menon, V. (2016). Neural circuits underlying mother’s voice perception predict social communication abilities in children. Proceedings of the National Academy of Sciences, 113(22), 6295–6300.Google Scholar
  3. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277.Google Scholar
  4. Ashar, Y. K., Chang, L. J., & Wager, T. D. (2017). Brain mechanisms of the placebo effect: An affective appraisal account. Annual Review of Clinical Psychology, 13, 73–98.Google Scholar
  5. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.Google Scholar
  6. Baliki, M. N., Chialvo, D. R., Geha, P. Y., Levy, R. M., Harden, R. N., Parrish, T. B., & Apkarian, A. V. (2006). Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. Journal of Neuroscience, 26(47), 12165–12173.Google Scholar
  7. Barke, A., Baudewig, J., Schmidt-Samoa, C., Dechent, P., & Kröner-Herwig, B. (2012). Neural correlates of fear of movement in high and low fear-avoidant chronic low back pain patients: An event-related fMRI study. Pain, 153(3), 540–552.Google Scholar
  8. Barke, A., Preis, M. A., Schmidt-Samoa, C., Baudewig, J., Kröner-Herwig, B., & Dechent, P. (2016). Neural correlates differ in high and low fear-avoidant chronic low back pain patients when imagining back-straining movements. The Journal of Pain, 17(8), 930–943.Google Scholar
  9. Black, A. K., Fulwiler, J. C., & Smitherman, T. A. (2015). The role of fear of pain in headache. Headache: The Journal of Head and Face Pain, 55(5), 669–679.Google Scholar
  10. Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267–277.Google Scholar
  11. Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 2981–2990.Google Scholar
  12. Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology, Paris, 109(1), 3–15.Google Scholar
  13. Ceko, M., Bushnell, M. C., Fitzcharles, M.-A., & Schweinhardt, P. (2013). Fibromyalgia interacts with age to change the brain. NeuroImage: Clinical, 3, 249–260.Google Scholar
  14. Crombez, G., Vlaeyen, J. W., Heuts, P. H., & Lysens, R. (1999). Pain-related fear is more disabling than pain itself: Evidence on the role of pain-related fear in chronic back pain disability. Pain, 80(1), 329–339.Google Scholar
  15. Crombez, G., Eccleston, C., Van Damme, S., Vlaeyen, J. W., & Karoly, P. (2012). Fear-avoidance model of chronic pain: The next generation. The Clinical Journal of Pain, 28(6), 475–483.Google Scholar
  16. Cui, Z., Su, M., Li, L., Shu, H., & Gong, G. (2017). Individualized prediction of reading comprehension ability using gray matter volume. Cerebral Cortex, 28(5), 1656–1672.Google Scholar
  17. de Jong, J. R., Vlaeyen, J. W., van Eijsden, M., Loo, C., & Onghena, P. (2012). Reduction of pain-related fear and increased function and participation in work-related upper extremity pain (WRUEP): Effects of exposure in vivo. Pain, 153(10), 2109–2118.Google Scholar
  18. Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93.Google Scholar
  19. Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693–700.Google Scholar
  20. Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057–1070.Google Scholar
  21. Evans, T. M., Kochalka, J., Ngoon, T. J., Wu, S. S., Qin, S., Battista, C., & Menon, V. (2015). Brain structural integrity and intrinsic functional connectivity forecast 6 year longitudinal growth in children's numerical abilities. Journal of Neuroscience, 35(33), 11743–11750.Google Scholar
  22. Gabrieli, J. D., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron, 85(1), 11–26.Google Scholar
  23. Gawryluk, J. R., Mazerolle, E. L., & D'Arcy, R. C. (2014). Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Frontiers in Neuroscience, 8, 239.Google Scholar
  24. Hirsh, A. T., George, S. Z., Bialosky, J. E., & Robinson, M. E. (2008). Fear of pain, pain catastrophizing, and acute pain perception: Relative prediction and timing of assessment. The Journal of Pain, 9(9), 806–812.Google Scholar
  25. Jackson, P. L., Brunet, E., Meltzoff, A. N., & Decety, J. (2006). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia, 44(5), 752–761.Google Scholar
  26. Ji, G.-J., Liao, W., Chen, F.-F., Zhang, L., & Wang, K. (2017). Low-frequency blood oxygen level-dependent fluctuations in the brain white matter: More than just noise. Scientific Bulletin, 62, 656–657.Google Scholar
  27. Kalisch, R. (2009). The functional neuroanatomy of reappraisal: Time matters. Neuroscience & Biobehavioral Reviews, 33(8), 1215–1226.Google Scholar
  28. Kirwilliam, S., & Derbyshire, S. (2008). Increased bias to report heat or pain following emotional priming of pain-related fear. Pain, 137(1), 60–65.Google Scholar
  29. Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation—An ALE meta-analysis and MACM analysis. NeuroImage, 87, 345–355.Google Scholar
  30. Kumbhare, D. A., Elzibak, A. H., & Noseworthy, M. D. (2017). Evaluation of chronic pain using magnetic resonance (MR) neuroimaging approaches: What the clinician needs to know. The Clinical Journal of Pain, 33(4), 281–290.Google Scholar
  31. Lamm, C., Nusbaum, H. C., Meltzoff, A. N., & Decety, J. (2007). What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PLoS One, 2(12), e1292.Google Scholar
  32. Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 2492–2502.Google Scholar
  33. Leeuw, M., Goossens, M. E., Linton, S. J., Crombez, G., Boersma, K., & Vlaeyen, J. W. (2007). The fear-avoidance model of musculoskeletal pain: Current state of scientific evidence. Journal of Behavioral Medicine, 30(1), 77–94.Google Scholar
  34. Leeuw, M., Goossens, M. E., van Breukelen, G. J., de Jong, J. R., Heuts, P. H., Smeets, R. J., Köke, A. J., & Vlaeyen, J. W. (2008). Exposure in vivo versus operant graded activity in chronic low back pain patients: Results of a randomized controlled trial. Pain, 138(1), 192–207.Google Scholar
  35. Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121–143.Google Scholar
  36. May, A. (2011). Structural brain imaging: A window into chronic pain. The Neuroscientist, 17(2), 209–220.Google Scholar
  37. McCracken, L. M., & Dhingra, L. (2002). A short version of the pain anxiety symptoms scale (PASS-20): Preliminary development and validity. Pain Research & Management, 7(1), 45–50.Google Scholar
  38. Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging Reviews, 1(2), 105–113.Google Scholar
  39. Meier, M. L., Stämpfli, P., Vrana, A., Humphreys, B. K., Seifritz, E., & Hotz-Boendermaker, S. (2015). Fear avoidance beliefs in back pain-free subjects are reflected by amygdala-cingulate responses. Frontiers in Human Neuroscience, 9.Google Scholar
  40. Meier, M. L., Stämpfli, P., Vrana, A., Humphreys, B. K., Seifritz, E., & Hotz-Boendermaker, S. (2016). Neural correlates of fear of movement in patients with chronic low back pain vs. pain-free individuals. Frontiers in Human Neuroscience, 10, 386.Google Scholar
  41. Meier, M. L., Stämpfli, P., Humphreys, B. K., Vrana, A., Seifritz, E., & Schweinhardt, P. (2017). The impact of pain-related fear on neural pathways of pain modulation in chronic low back pain. Pain Reports, 2(3), e601.Google Scholar
  42. Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. NeuroImage, 112, 244–253.Google Scholar
  43. Neeb, L., Bastian, K., Villringer, K., Israel, H., Reuter, U., & Fiebach, J. B. (2017). Structural gray matter alterations in chronic migraine: Implications for a progressive disease? Headache: The Journal of Head and Face Pain, 57(3), 400–416.Google Scholar
  44. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(Oct), 2825–2830.Google Scholar
  45. Peters, M. L., Vlaeyen, J. W., & Weber, W. E. (2005). The joint contribution of physical pathology, pain-related fear and catastrophizing to chronic back pain disability. Pain, 113(1–2), 45–50.Google Scholar
  46. Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288(5472), 1769–1772.Google Scholar
  47. Salomons, T. V., & Davis, K. D. (2012). Fear avoidance and neuroimaging: Falsification or just failure to confirm? Pain, 153(3), 511–512.Google Scholar
  48. Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), 154–167.Google Scholar
  49. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240.Google Scholar
  50. Simons, L. E. (2016). Fear of pain in children and adolescents with neuropathic pain and CRPS. Pain, 157(0 1), S90–S97.Google Scholar
  51. Simons, L. E., Pielech, M., Cappucci, S., & Lebel, A. (2015). Fear of pain in pediatric headache. Cephalalgia, 35(1), 36–44.Google Scholar
  52. Smallwood, R. F., Laird, A. R., Ramage, A. E., Parkinson, A. L., Lewis, J., Clauw, D. J., Williams, D. A., Schmidt-Wilcke, T., Farrell, M. J., & Eickhoff, S. B. (2013). Structural brain anomalies and chronic pain: A quantitative meta-analysis of gray matter volume. The Journal of Pain, 14(7), 663–675.Google Scholar
  53. Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: unique role in cognition and emotion. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(2), 121–125.Google Scholar
  54. Suhr, J., & Spickard, B. (2012). Pain-related fear is associated with cognitive task avoidance: Exploration of the cogniphobia construct in a recurrent headache sample. The Clinical Neuropsychologist, 26(7), 1128–1141.Google Scholar
  55. Swinkels-Meewisse, I. E., Roelofs, J., Oostendorp, R. A., Verbeek, A. L., & Vlaeyen, J. W. (2006). Acute low back pain: Pain-related fear and pain catastrophizing influence physical performance and perceived disability. Pain, 120(1), 36–43.Google Scholar
  56. Taylor, A. M., Harris, A. D., Varnava, A., Phillips, R., Taylor, J. O., Hughes, O., Wilkes, A. R., Hall, J. E., & Wise, R. G. (2015). A functional magnetic resonance imaging study to investigate the utility of a picture imagination task in investigating neural responses in patients with chronic musculoskeletal pain to daily physical activity photographs. PLoS One, 10(10), e0141133.Google Scholar
  57. Thomas, J. S., & France, C. R. (2007). Pain-related fear is associated with avoidance of spinal motion during recovery from low back pain. Spine, 32(16), E460–E466.Google Scholar
  58. Trost, Z., France, C. R., & Thomas, J. S. (2011). Pain-related fear and avoidance of physical exertion following delayed-onset muscle soreness. Pain, 152(7), 1540–1547.Google Scholar
  59. Turk, D. C., & Wilson, H. D. (2010). Fear of pain as a prognostic factor in chronic pain: Conceptual models, assessment, and treatment implications. Current Pain and Headache Reports, 14(2), 88–95.Google Scholar
  60. Van Damme, S., Crombez, G., & Eccleston, C. (2002). Retarded disengagement from pain cues: The effects of pain catastrophizing and pain expectancy. Pain, 100(1), 111–118.Google Scholar
  61. Van Damme, S., Crombez, G., & Eccleston, C. (2004). The anticipation of pain modulates spatial attention: Evidence for pain-specificity in high-pain catastrophizers. Pain, 111(3), 392–399.Google Scholar
  62. Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829–858.Google Scholar
  63. Vlaeyen, J. W., & Linton, S. J. (2000). Fear-avoidance and its consequences in chronic musculoskeletal pain: A state of the art. Pain, 85(3), 317–332.Google Scholar
  64. Vlaeyen, J. W., & Linton, S. J. (2012). Fear-avoidance model of chronic musculoskeletal pain: 12 years on. Pain, 153(6), 1144–1147.Google Scholar
  65. Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews. Neuroscience, 6(7), 533–544.Google Scholar
  66. Whitwell, J. L. (2009). Voxel-based morphometry: An automated technique for assessing structural changes in the brain. Journal of Neuroscience, 29(31), 9661–9664.Google Scholar
  67. Younger, J. W., Shen, Y. F., Goddard, G., & Mackey, S. C. (2010). Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain, 149(2), 222–228.Google Scholar
  68. Zale, E. L., & Ditre, J. W. (2015). Pain-related fear, disability, and the fear-avoidance model of chronic pain. Current Opinion In Psychology, 5, 24–30.Google Scholar
  69. Zale, E. L., Lange, K. L., Fields, S. A., & Ditre, J. W. (2013). The relation between pain-related fear and disability: A meta-analysis. The Journal of Pain, 14(10), 1019–1030.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Cognition and Personality, Faculty of PsychologySouthwest UniversityChongqingChina
  2. 2.Department of Psychiatry and Medical PsychologyGhent UniversityGhentBelgium
  3. 3.Department of Psychiatry, Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZBrussel)BrusselsBelgium
  4. 4.Ghent Experimental Psychiatry (GHEP) LabGhent UniversityGhentBelgium
  5. 5.Department of Art EducationChongqing Vocational College of Applied TechnologyChongqingChina

Personalised recommendations