Brain Imaging and Behavior

, Volume 13, Issue 5, pp 1418–1426 | Cite as

Quality of life is related to the functional connectivity of the default mode network at rest

  • Inessa Kraft
  • Joana Bisol Balardin
  • João Ricardo Sato
  • Jens Sommer
  • Patricia Tobo
  • Carla Barrichello
  • Edson AmaroJr
  • Elisa Harumi KozasaEmail author
Original Research


Quality of life is an important issue concerning people all over the world and affecting patients in the mental health field. When considering the potential neural links between quality of life and the brain, a brain network that comes into mind is the default mode network (DMN). Its architecture and function has been investigated in relation to various research fields including social and emotional cognition, meditation and neuropsychiatric disorders as well as happiness. In this cross-sectional study we investigated the relationship between various quality of life domains (physiological, psychological, social and environmental) and the functional connectivity of the default mode network at rest in a sample of 42 healthy working female managers. The results indicate that there is a significant association between the social quality of life domain and the functional connectivity of the default mode network. Post-hoc analysis revealed that high social quality of life scores were associated with right-left lateral parietal hypoconnectivity. By adopting a wide ranging perspective, our study approaches to fundamental research about quality of life but so far only applied on a female subgroup. As far as we know, it is the first to analyze the neuronal correlates of quality of life in the brain and therefore sets an initial step in its investigation.


DMN Quality of life Connectivity Women 



This study was funded by Natura Cosméticos S.A. and Instituto Israelita de Ensino e Pesquisa Albert Einstein.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11682_2018_9954_MOESM1_ESM.png (34 kb)
ESM 1 (PNG 34 kb)


  1. Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim, K. O., & Gunning, F. M. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression. Journal of Affective Disorders, 139(1), 56–65.CrossRefGoogle Scholar
  2. Beer, J. S. (2007). The default self: feeling good or being right? Trends in Cognitive Sciences, 11(5), 187–189.CrossRefGoogle Scholar
  3. Berlim M. T., Fleck M. P. (2007) Quality of life and major depression. In: Ritsner M. S., Awad A. G. (Eds.), Quality of Life Impairment in Schizophrenia, Mood and Anxiety Disorders. Dordrecht: Springer.Google Scholar
  4. Biswal, B., Yetkin, F, Z., Haughton, V, M., Hyde, J, S. (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4), 537–41.Google Scholar
  5. Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences, 108(50), 20254–20259.CrossRefGoogle Scholar
  6. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network. Annals of the New York Academy of Sciences, 1124(1), 1–38.CrossRefGoogle Scholar
  7. Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasticity: stress and interventions to promote well-being. Nature Neuroscience, 15(5), 689–695.CrossRefGoogle Scholar
  8. Davidson, R. J., Kabat-Zinn, J., Schumacher, J., Rosenkranz, M., Muller, D., Santorelli, S. F., Urbanowski, F., Harrington, A., Bonus, K., & Sheridan, J. F. (2003). Alterations in brain and immune function produced by mindfulness meditation. Psychosomatic Medicine, 65(4), 564–570.CrossRefGoogle Scholar
  9. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., van, Essen, D. C., Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102, 9673–9678.Google Scholar
  10. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253–258.CrossRefGoogle Scholar
  11. Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage, 82, 208–225.CrossRefGoogle Scholar
  12. Hankin, B. L., & Abramson, L. Y. (2001). Development of gender differences in depression: An elaborated cognitive vulnerability–transactional stress theory. Psychological Bulletin, 127(6), 773–796.CrossRefGoogle Scholar
  13. Iacoboni, M., Lieberman, M. D., Knowlton, B. J., Molnar-Szakacs, I., Moritz, M., Throop, C. J., & Fiske, A. P. (2004). Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage, 21(3), 1167–1173.CrossRefGoogle Scholar
  14. Katschnig, H. (2006). Quality of life in mental disorders: challenges for research and clinical practice. World Psychiatry, 5(3), 139–145.Google Scholar
  15. Killingsworth, M. A., & Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330(6006), 932–932.CrossRefGoogle Scholar
  16. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12(5), 535–540.CrossRefGoogle Scholar
  17. Lanius, R. A., Bluhm, R. L., Coupland, N. J., Hegadoren, K. M., Rowe, B., Theberge, J., et al. (2010). Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatrica Scandinavica, 121(1), 33–40.CrossRefGoogle Scholar
  18. Lieberman, M. D. (2007). Social cognitive neuroscience: a review of core processes. Annual Review of Psychology, 58, 259–289.CrossRefGoogle Scholar
  19. Luo, Y., Huang, X., Yang, Z., Li, B., Liu, J., & Wei, D. (2014). Regional homogeneity of intrinsic brain activity in happy and unhappy individuals. PLoS One, 9(1), e85181.CrossRefGoogle Scholar
  20. Luo, Y., Kong, F., Qi, S., You, X., & Huang, X. (2015). Resting-state functional connectivity of the default mode network associated with happiness. Social Cognitive and Affective Neuroscience, 11(3), 516–524.CrossRefGoogle Scholar
  21. Luo, Y., Qi, S., Chen, X., You, X., Huang, X., & Yang, Z. (2017). Pleasure attainment or self-realization: The balance between two forms of well-beings are encoded in default mode network. Social Cognitive and Affective Neuroscience, 12(10), 1678–1686.CrossRefGoogle Scholar
  22. Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., & Menon, V. (2013). Default mode network in childhood autism: posteromedial cortex heterogeneity and relationship with social deficits. Biological Psychiatry, 74(3), 212–219.CrossRefGoogle Scholar
  23. Mar, R. A. (2011). The neural bases of social cognition and story comprehension. Annual Review of Psychology, 62, 103–134.CrossRefGoogle Scholar
  24. Marongiu Ivarsson, S., & Ekehammar, B. (2001). Women’s entry into management: Comparing women managers and non-managers. Journal of Managerial Psychology, 16(4), 301–314.CrossRefGoogle Scholar
  25. McArtor, D. B., Lubke, G. H., & Bergeman, C. S. (2017). Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika, 82(4), 1052–1077.CrossRefGoogle Scholar
  26. Moran, J. M., Macrae, C. N., Heatherton, T. F., Wyland, C. L., & Kelley, W. M. (2006). Neuroanatomical evidence for distinct cognitive and affective components of self. Journal of Cognitive Neuroscience, 18(9), 1586–1594.CrossRefGoogle Scholar
  27. Nakamura, J., & Csikszentmihalyi, M. (2014). The concept of flow. In Flow and the foundations of positive psychology (pp. 239–263). Dordrecht: Springer.Google Scholar
  28. Northoff, G., & Bermpohl, F. (2004). Cortical midline structures and the self. Trends in Cognitive Sciences, 8(3), 102–107.CrossRefGoogle Scholar
  29. Qin, P., & Northoff, G. (2011). How is our self related to midline regions and the default-mode network? Neuroimage, 57(3), 1221–1233.
  30. Rabin, J. S., Gilboa, A., Stuss, D. T., Mar, R. A., & Rosenbaum, R. S. (2010). Common and unique neural correlates of autobiographical memory and theory of mind. Journal of Cognitive Neuroscience, 22(6), 1095–1111.CrossRefGoogle Scholar
  31. Ritsner, M. S., & Awad, A. G. (2007). Quality of life impairment in schizophrenia, mood and anxiety disorders (pp. 133–142). Dordrecht, Netherlands: Springer.Google Scholar
  32. Satterthwaite, T. D., Vandekar, S. N., Wolf, D. H., Bassett, D. S., Ruparel, K., Shehzad, Z., Craddock, R. C., Shinohara, R. T., Moore, T. M., Gennatas, E. D., Jackson, C., Roalf, D. R., Milham, M. P., Calkins, M. E., Hakonarson, H., Gur, R. C., & Gur, R. E. (2015). Connectome-wide network analysis of youth with psychosis spectrum symptoms HHS public access. Molecular Psychiatry, 20(12), 1508–1515.CrossRefGoogle Scholar
  33. Shehzad, Z., Kelly, C., Reiss, P. T., Cameron, C. R., Emerson, J. W., McMahon, K., et al. (2014). A multivariate distance-based analytic framework for connectome-wide association studies. NeuroImage, 93(Pt 1), 74–94.CrossRefGoogle Scholar
  34. Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., Mintun, M. A., Wang, S., Coalson, R. S., & Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences, 106(6), 1942–1947. Scholar
  35. Skevington, S. M., Lotfy, M., & O’Connell, K. A. (2004). The World Health Organization’s WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial a report from the WHOQOL group. Quality of Life Research, 13(2), 299–310.CrossRefGoogle Scholar
  36. Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510.CrossRefGoogle Scholar
  37. Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sassa, Y., Sekiguchi, A., Kotozaki, Y., Nakagawa, S., Nagase, T., Miyauchi, C. M., & Kawashima, R. (2014). Anatomical correlates of quality of life: evidence from voxel-based morphometry. Human Brain Mapping, 35(5), 1834–1846.CrossRefGoogle Scholar
  38. The Whoqol Group. (1998). The World Health Organization quality of life assessment (WHOQOL): development and general psychometric properties. Social Science & Medicine, 46(12), 1569–1585.CrossRefGoogle Scholar
  39. Topp, C. W., Østergaard, S. D., Søndergaard, S., & Bech, P. (2015). The WHO-5 well-being index: a systematic review of the literature. Psychotherapy and Psychosomatics, 84(3), 167–176.CrossRefGoogle Scholar
  40. Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., & Buckner, R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology, 96(6), 3517–3531.CrossRefGoogle Scholar
  41. Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Reply to comments on “puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition”. Perspectives on Psychological Science, 4(3), 319–324. Scholar
  42. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. Scholar
  43. Wilson, S. M., Molnar-Szakacs, I., & Iacoboni, M. (2008). Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension. Cerebral Cortex, 18(1), 230–242.CrossRefGoogle Scholar
  44. Zapala, M. A., & Schork, N. J. (2012). Statistical properties of multivariate distance matrix regression for high-dimensional data analysis. Frontiers in Genetics, 3, 190. Scholar
  45. Zapala, M. A., & Schork, N. J. (2006) Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci U S A. 103(51), 19430–5.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
  2. 2.Hospital Israelita Albert EinsteinSão PauloBrazil
  3. 3.Universidade Federal do ABCSão BernardoBrazil
  4. 4.Natura InovaçãoCajamarBrazil

Personalised recommendations