Advertisement

Brain Imaging and Behavior

, Volume 13, Issue 5, pp 1324–1332 | Cite as

Increased interhemispheric synchrony underlying the improved athletic performance of rowing athletes by transcranial direct current stimulation

  • Xiaoyun Liu
  • Xi Yang
  • Zhenghua Hou
  • Ming Ma
  • Wenhao Jiang
  • Caiyun Wang
  • Yuqun Zhang
  • Yonggui YuanEmail author
Original Research

Abstract

To explore the mechanism of transcranial direct current stimulation (tDCS) on the improved performance of professional rowing athletes. Twelve male professional rowing athletes were randomly divided into two groups (low-stimulation group, 1 mA, n = 6; high-stimulation group, 2 mA, n = 6), and they accepted tDCS for two consecutive weeks while undergoing regular training (20 min each time, five times a week, totally ten times). The assessments of depression, anxiety, executive function, fatigue perception, lactate threshold power (LTP) and isokinetic muscle strength as well as the collection of functional magnetic resonance imaging (fMRI) data were performed at baseline and at follow-up (the end of the fourth week). The voxel-mirrored homotopic connectivity (VMHC) value was calculated in the whole brain. After stimulation, there were significant increases in executive function and athletic performance. Analysis of variance (ANOVA) analysis indicated time factor, stimulation intensity factor had a main effect on LTP and 60RK, respectively. There was no significant difference of VMHC value between the high- and low-stimulation groups at baseline. Comparing with low-stimulation group, significant increased VMHC values of the bilateral middle temporal gyrus (MTG), precentral gyrus and superior frontal gyrus (SFG) were found in high-stimulation group at follow-up. Correlation analyses showed that in high-stimulation group, the VMHC values of bilateral MTG and SFG were both positively correlated with the measures of athletic performance. tDCS may contribute to the improvement of athletic performance in professional rowing athletes, and the increased interhemispheric coordination may be involved in the mechanism of the improved athletic performance.

Keywords

tDCS Rowing athletes Athletic performance VMHC 

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFC1306700), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAI13B01) and the National Natural Science Foundation of China (81371488, YY). And the State Scholarship Fund of the China Scholarship Council (Hou, 201706090193); the Scientific Research Foundation of the Graduate School of Southeast University (Hou, YBJJ1742).

Compliance with ethical standards

Conflicts of interest

All authors declare that they have no conflicts of interest.

References

  1. Andrade, A. C., Magnavita, G. M., Allegro, J. V. B. N., Neto, C. E. B. P., Lucena, R. D. C. S., & Fregni, F. (2013). Feasibility of transcranial direct current stimulation use in children aged 5 to 12 years. Journal of Child Neurology, 29(10), 1360–1365.CrossRefGoogle Scholar
  2. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain's default network. Neuron, 65(4), 550–562.CrossRefGoogle Scholar
  3. Angius, L., Pageaux, B., Hopker, J., Marcora, S. M., & Mauger, A. R. (2016). Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience, 339, 363–375.CrossRefGoogle Scholar
  4. Antal, A., & Paulus, W. (2010). Transcranial magnetic and direct current stimulation in the therapy of pain. Schmerz, 24(2), 161–166.CrossRefGoogle Scholar
  5. Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K. P., & Paulus, W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16(4), 521–527.CrossRefGoogle Scholar
  6. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851.CrossRefGoogle Scholar
  7. Beneke, R. (1995). Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Medicine and Science in Sports and Exercise, 27(6), 863–867.CrossRefGoogle Scholar
  8. Benninger, D. H., Lomarev, M., Lopez, G., Wassermann, E. M., Li, X., Considine, E., & Hallett, M. (2010). Transcranial direct current stimulation for the treatment of Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 81(10), 1105–1111.CrossRefGoogle Scholar
  9. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796.CrossRefGoogle Scholar
  10. Boggio, P. S., Valasek, C. A., Campanhã, C., Giglio, A. C. A., Baptista, N. I., Lapenta, O. M., & Fregni, F. (2011). Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer's disease. Neuropsychological Rehabilitation, 21(5), 703–716.CrossRefGoogle Scholar
  11. Bolognini, N., Vallar, G., Casati, C., Latif, L. A., El-Nazer, R., Williams, J., et al. (2011). Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabilitation and Neural Repair, 25(9), 819–829.CrossRefGoogle Scholar
  12. Borducchi, D. M. M., Gomes, J. S., Akiba, H., Cordeiro, Q., Borducchi, J. H. M., Valentin, L. S. S., et al. (2016). Transcranial direct current stimulation effects on athletes’ cognitive performance: An exploratory proof of concept trial. Frontiers in Psychiatry, 7, 183.CrossRefGoogle Scholar
  13. Chalder, T., Berelowitz, G., Pawlikowska, T., Watts, L., Wessely, S., Wright, D., & Wallace, E. P. (1993). Development of a fatigue scale. Journal of Psychosomatic Research, 37(2), 147–153.CrossRefGoogle Scholar
  14. Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage, 85, 895–908.CrossRefGoogle Scholar
  15. Fitts, R. H. (2008). The cross-bridge cycle and skeletal muscle fatigue. Journal of Applied Physiology, 104(2), 551–558.CrossRefGoogle Scholar
  16. Foerster, Á., Melo, L., Mello, M., Castro, R., Shirahige, L., Rocha, S., & Monte-Silva, K. (2017). Cerebellar transcranial direct current stimulation (ctDCS) impairs balance control in healthy individuals. Cerebellum, 16(4), 872–875.CrossRefGoogle Scholar
  17. Fridriksson, J., Richardson, J. D., Baker, J. M., & Rorden, C. (2011). Transcranial direct current stimulation improves naming reaction time in fluent aphasia: A double-blind, sham-controlled study. Stroke, 42(3), 819–821.CrossRefGoogle Scholar
  18. Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789.CrossRefGoogle Scholar
  19. Gordon, N. G. (1972). The trail making test in neuropsychological diagnosis. Journal of Clinical Psychology, 28(2), 167–169.CrossRefGoogle Scholar
  20. Grabner, R. H., Rütsche, B., Ruff, C. C., & Hauser, T. U. (2015). Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning. European Journal of Neuroscience, 42(1), 1667–1674.CrossRefGoogle Scholar
  21. Heppe, H., Kohler, A., Fleddermann, M. T., & Zentgraf, K. (2016). The relationship between expertise in sports, visuospatial, and basic cognitive skills. Frontiers in Psychology, 7, 904.CrossRefGoogle Scholar
  22. Hou, Z., Sui, Y., Song, X., & Yuan, Y. (2016). Disrupted interhemispheric synchrony in default mode network underlying the impairment of cognitive flexibility in late-onset depression. Frontiers in Aging Neuroscience, 8, 230.Google Scholar
  23. Koss, E., Ober, B. A., Delis, D. C., & Friedland, R. P. (1984). The stroop color-word test: Indicator of dementia severity. International Journal of Neuroscience, 24(1), 53–61.CrossRefGoogle Scholar
  24. Kroenke, K. (2012). Enhancing the clinical utility of depression screening. Canadian Medical Association Journal, 184(3), 281–282.CrossRefGoogle Scholar
  25. Lee, M. M., Lee, K. J., & Song, C. H. (2018). Game-based virtual reality canoe paddling training to improve postural balance and upper extremity function: A preliminary randomized controlled study of 30 patients with subacute stroke. Medical Science Monititor, 24, 2590–2598.CrossRefGoogle Scholar
  26. Loo, C. K., Sachdev, P., Martin, D., Pigot, M., Alonzo, A., Malhi, G. S., Lagopoulos, J., & Mitchell, P. (2010). A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. International Journal of Neuropsychopharmacology, 13(1), 61–69.CrossRefGoogle Scholar
  27. Markser, V. Z. (2011). Sport psychiatry and psychotherapy. Mental strains and disorders in professional sports. Challenge and answer to societal changes. European Archives of Psychiatry and Clinical Neuroscience, 261, S182–S185.CrossRefGoogle Scholar
  28. Martino, J., Gabarrós, A., Deus, J., Juncadella, M., Acebes, J. J., Torres, A., & Pujol, J. (2011). Intrasurgical mapping of complex motor function in the susperior frontal gyrus. Neuroscience, 179, 131–142.CrossRefGoogle Scholar
  29. Meron, D., Hedger, N., Garner, M., & Baldwin, D. S. (2015). Transcranial direct current stimulation (tDCS) in the treatment of depression: Systematic review and meta-analysis of efficacy and tolerability. Neuroscience and Biobehavioral Reviews, 57, 46–62.CrossRefGoogle Scholar
  30. Montenegro, R. A., Okano, A. H., Cunha, F. A., Gurgel, J. L., Fontes, E. B., & Farinatti, P. T. V. (2012). Prefrontal cortex transcranial direct current stimulation associated with aerobic exercise change aspects of appetite sensation in overweight adults. Appetite, 58(1), 333–338.CrossRefGoogle Scholar
  31. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology (London), 527(Pt 3), 633–639.CrossRefGoogle Scholar
  32. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.CrossRefGoogle Scholar
  33. Okano, A. H., Fontes, E. B., Montenegro, R. A., Farinatti, P. T. V., Cyrino, E. S., Li, L. M., et al. (2013). Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. British Journal of Sports Medicine, 49(18), 1213–1218.CrossRefGoogle Scholar
  34. Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4–6), 208–214.CrossRefGoogle Scholar
  35. Rattray, B., Argus, C., Martin, K., Northey, J., & Driller, M. (2015). Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance? Frontiers in Physiology, 6, 79.CrossRefGoogle Scholar
  36. Reardon, S. (2016). ‘Brain doping’ may improve athletes’ performance. Nature, 531(7594), 283–284.CrossRefGoogle Scholar
  37. Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 24(6), 590–596.CrossRefGoogle Scholar
  38. Rice, S. M., Purcell, R., De Silva, S., Mawren, D., McGorry, P. D., & Parker, A. G. (2016). The mental health of elite athletes: A narrative systematic review. Sports Medicine, 46(9), 1333–1353.CrossRefGoogle Scholar
  39. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111(2), 246–252.CrossRefGoogle Scholar
  40. Shiozawa, P., Leiva, A. P. G., Castro, C. D. C., da Silva, M. E., Cordeiro, Q., Fregni, F., & Brunoni, A. R. (2014). Transcranial direct current stimulation for generalized anxiety disorder: A case study. Biological Psychiatry, 75(11), e17–e18.CrossRefGoogle Scholar
  41. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6(9), e25031.CrossRefGoogle Scholar
  42. Spitzer, R. L., Kroenke, K., Williams, J. B., & Lowe, B. (2006). A brief measure for assessing generalized anxiety disorder: The GAD-7. Archives of Internal Medicine, 166(10), 1092–1097.CrossRefGoogle Scholar
  43. Stefani, E. D., De Marco, D., & Gentilucci, M. (2015). Factors affecting athletes’ motor behavior after the observation of scenes of cooperation and competition in competitive sport: The effect of sport attitude. Frontiers in Psychology, 6, 1648.CrossRefGoogle Scholar
  44. Undheim, M. B., Cosgrave, C., King, E., Strike, S., Marshall, B., Falvey, É., & Franklyn-Miller, A. (2015). Isokinetic muscle strength and readiness to return to sport following anterior cruciate ligament reconstruction: Is there an association? A systematic review and a protocol recommendation. British Journal of Sports Medicine, 49(20), 1305–1310.CrossRefGoogle Scholar
  45. Wang, Z., Wang, J., Zhang, H., Mchugh, R., Sun, X., Li, K., & Yang, Q. X. (2015). Interhemispheric functional and structural disconnection in Alzheimer’s disease: A combined resting-state fMRI and DTI study. PLoS One, 10(5), e0126310.CrossRefGoogle Scholar
  46. Weber, M. J., Messing, S. B., Rao, H., Detre, J. A., & Thompson-Schill, S. L. (2014). Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: A tDCS-fMRI study. Human Brain Mapping, 35(8), 3673–3686.CrossRefGoogle Scholar
  47. Williams, P. S., Hoffman, R. L., & Clark, B. C. (2013). Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS One, 8(12), e81418.CrossRefGoogle Scholar
  48. Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.Google Scholar
  49. Yuan, Y., Zhang, Z., Bai, F., Yu, H., Shi, Y., Qian, Y., Zang, Y., Zhu, C., Liu, W., & You, J. (2007). White matter integrity of the whole brain is disrupted in first-episode remitted geriatric depression. NeuroReport, 18(17), 1845–1849.CrossRefGoogle Scholar
  50. Zuo, X. N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S., Bangaru, S., et al. (2010). Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy. Journal of Neuroscience, 30(45), 15034–15043.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoyun Liu
    • 1
  • Xi Yang
    • 2
  • Zhenghua Hou
    • 1
  • Ming Ma
    • 2
  • Wenhao Jiang
    • 1
  • Caiyun Wang
    • 1
  • Yuqun Zhang
    • 1
  • Yonggui Yuan
    • 1
    Email author
  1. 1.Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
  2. 2.Department of Rehabilitation, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations