Advertisement

Brain Imaging and Behavior

, Volume 13, Issue 5, pp 1375–1385 | Cite as

Cerebral blood flow in acute concussion: preliminary ASL findings from the NCAA-DoD CARE consortium

  • Yang WangEmail author
  • Andrew S. Nencka
  • Timothy B. Meier
  • Kevin Guskiewicz
  • Jason P. Mihalik
  • M. Alison Brooks
  • Andrew J. Saykin
  • Kevin M. Koch
  • Yu-Chien Wu
  • Lindsay D. Nelson
  • Thomas W. McAllister
  • Steven P. Broglio
  • Michael A. McCrea
Original Research

Abstract

Sport-related concussion (SRC) has become a major health problem, affecting millions of athletes each year. Despite the increasing occurrence and prevalence of SRC, its underlying mechanism and recovery course have yet to be fully elucidated. The National Collegiate Athletic Association–Department of Defense Grand Alliance: Concussion Assessment, Research and Education (CARE) Consortium is a large-scale, multisite study of the natural history of concussion across multiple sports. The Advanced Research Core (ARC) of CARE is focused on the advanced biomarker assessment of a reduced subject cohort. This paper reports findings from two ARC sites to evaluate cerebral blood flow (CBF) changes in acute SRC, as measured using advanced arterial spin labeling (ASL) magnetic resonance imaging (MRI). We compared relative CBF maps assessed in 24 concussed contact sport athletes obtained at 24–48 h after injury to those of a control group of 24 matched contact sport players. Significantly less CBF was detected in several brain regions in concussed athletes, while clinical assessments also indicated clinical symptom and performance impairments in SRC patients. Correlations were found between decreased CBF in acute SRC and clinical assessments, including Balance Error Scoring System total score and Immediate Post-Concussion Assessment and Cognitive Test memory composite and impulse control composite scores, as well as days from injury to asymptomatic. Although using different ASL MRI sequences, our preliminary results from two sites are consistent with previous reports and suggest that advanced ASL MRI methods might be useful for detecting acute neurobiological changes in acute SRC.

Keywords

Cerebral blood flow Concussion Traumatic brain injury Arterial spin labeling Contact sport MRI 

Notes

Acknowledgements

This publication was made possible, in part, with support from the Grand Alliance Concussion Assessment, Research, and Education (CARE) Consortium, funded, in part by the National Collegiate Athletic Association (NCAA) and the Department of Defense (DOD). The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office. This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Psychological Health and Traumatic Brain Injury Program under Award NO W81XWH-14-2-0151. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense (DHP funds). The authors would also like to thank Jody Harland, Janetta Matesan, Larry Riggen (Indiana University); Ashley Rettmann (University of Michigan); Melissa Koschnitzke (Medical College of Wisconsin); Michael Jarrett, Vibeke Brinck and Bianca Byrne (Quesgen); Thomas Dompier, Melissa Niceley Baker, and Sara Dalton (Datalys Center for Sports Injury Research and Prevention); and the research and medical staff at each of the participating sites.

Funding

This study was funded as part of the National Collegiate Athletic Association–Department of Defense Grand Alliance.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Research involving human participants

This study was approved by MCW IRB.

Informed consent

All subjects provided written informed consent before participating in the study.

References

  1. Alsop, D. C., Detre, J. A., Golay, X., Gunther, M., Hendrikse, J., Hernandez-Garcia, L., et al. (2015). Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine, 73(1), 102–116.  https://doi.org/10.1002/mrm.25197.CrossRefGoogle Scholar
  2. Aslan, S., & Lu, H. (2010). On the sensitivity of ASL MRI in detecting regional differences in cerebral blood flow. Magnetic Resonance Imaging, 28(7), 928–935.  https://doi.org/10.1016/j.mri.2010.03.037.CrossRefGoogle Scholar
  3. Asllani, I., Borogovac, A., & Brown, T. R. (2008). Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magnetic Resonance in Medicine, 60(6), 1362–1371.  https://doi.org/10.1002/mrm.21670.CrossRefGoogle Scholar
  4. Asllani, I., Habeck, C., Borogovac, A., Brown, T. R., Brickman, A. M., & Stern, Y. (2009). Separating function from structure in perfusion imaging of the aging brain. Human Brain Mapping, 30(9), 2927–2935.  https://doi.org/10.1002/hbm.20719.CrossRefGoogle Scholar
  5. Audenaert, K., Jansen, H. M., Otte, A., Peremans, K., Vervaet, M., Crombez, R., de Ridder, L., van Heeringen, C., Thirot, J., Dierckx, R., & Korf, J. (2003). Imaging of mild traumatic brain injury using 57Co and 99mTc HMPAO SPECT as compared to other diagnostic procedures. Medical Science Monitor, 9(10), MT112–MT117.Google Scholar
  6. Barlow, K. M., Marcil, L. D., Dewey, D., Carlson, H. L., MacMaster, F. P., Brooks, B. L., & Lebel, R. M. (2017). Cerebral perfusion changes in post-concussion syndrome: A prospective controlled cohort study. Journal of Neurotrauma, 34(5), 996–1004.  https://doi.org/10.1089/neu.2016.4634.CrossRefGoogle Scholar
  7. Centers for Disease, C., & Prevention. (2007). Nonfatal traumatic brain injuries from sports and recreation activities--United States, 2001-2005. MMWR. Morbidity and Mortality Weekly Report, 56(29), 733–737.Google Scholar
  8. Chen, Y., Wang, D. J., & Detre, J. A. (2011). Test-retest reliability of arterial spin labeling with common labeling strategies. Journal of Magnetic Resonance Imaging, 33(4), 940–949.  https://doi.org/10.1002/jmri.22345.CrossRefGoogle Scholar
  9. Chen, G., Saad, Z. S., Nath, A. R., Beauchamp, M. S., & Cox, R. W. (2012). FMRI group analysis combining effect estimates and their variances. Neuroimage, 60(1), 747–765.  https://doi.org/10.1016/j.neuroimage.2011.12.060.CrossRefGoogle Scholar
  10. Chow, H. M., Horovitz, S. G., Carr, W. S., Picchioni, D., Coddington, N., Fukunaga, M., Xu, Y., Balkin, T. J., Duyn, J. H., & Braun, A. R. (2013). Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10300–10305.  https://doi.org/10.1073/pnas.1217691110.CrossRefGoogle Scholar
  11. Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C., & Taylor, P. A. (2017). FMRI clustering in AFNI: False-positive rates redux. Brain Connectivity, 7(3), 152–171.  https://doi.org/10.1089/brain.2016.0475.CrossRefGoogle Scholar
  12. Dashnaw, M. L., Petraglia, A. L., & Bailes, J. E. (2012). An overview of the basic science of concussion and subconcussion: Where we are and where we are going. Neurosurgical Focus, 33(6), E5: 1–9.  https://doi.org/10.3171/2012.10.FOCUS12284.CrossRefGoogle Scholar
  13. Detre, J. A., Wang, J., Wang, Z., & Rao, H. (2009). Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Current Opinion in Neurology, 22(4), 348–355.  https://doi.org/10.1097/WCO.0b013e32832d9505.CrossRefGoogle Scholar
  14. Dijkhuizen, R. M. (2011). Advances in MRI-based detection of cerebrovascular changes after experimental traumatic brain injury. Translational Stroke Research, 2(4), 524–532.  https://doi.org/10.1007/s12975-011-0130-0.CrossRefGoogle Scholar
  15. Donahue, M. J., Lu, H., Jones, C. K., Pekar, J. J., & van Zijl, P. C. (2006). An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR in Biomedicine, 19(8), 1043–1054.  https://doi.org/10.1002/nbm.1075.CrossRefGoogle Scholar
  16. Gardner, A. J., Tan, C. O., Ainslie, P. N., van Donkelaar, P., Stanwell, P., Levi, C. R., & Iverson, G. L. (2015). Cerebrovascular reactivity assessed by transcranial Doppler ultrasound in sport-related concussion: A systematic review. British Journal of Sports Medicine, 49(16), 1050–1055.  https://doi.org/10.1136/bjsports-2014-093901.CrossRefGoogle Scholar
  17. Ginsberg, M. D., Zhao, W., Alonso, O. F., Loor-Estades, J. Y., Dietrich, W. D., & Busto, R. (1997). Uncoupling of local cerebral glucose metabolism and blood flow after acute fluid-percussion injury in rats. Am J Physiol, 272(6 Pt 2), H2859–2868.  https://doi.org/10.1152/ajpheart.1997.272.6.H2859.
  18. Giza, C. C., & Hovda, D. A. (2014). The new neurometabolic cascade of concussion. Neurosurgery, 75(Suppl 4), S24–S33.  https://doi.org/10.1227/NEU.0000000000000505.CrossRefGoogle Scholar
  19. Goldstein, B., Toweill, D., Lai, S., Sonnenthal, K., & Kimberly, B. (1998). Uncoupling of the autonomic and cardiovascular systems in acute brain injury. The American Journal of Physiology, 275(4 Pt 2), R1287–R1292.Google Scholar
  20. Gowda, N. K., Agrawal, D., Bal, C., Chandrashekar, N., Tripati, M., Bandopadhyaya, G. P., Malhotra, A., & Mahapatra, A. K. (2006). Technetium Tc-99m ethyl cysteinate dimer brain single-photon emission CT in mild traumatic brain injury: A prospective study. AJNR. American Journal of Neuroradiology, 27(2), 447–451.Google Scholar
  21. Harmon, K. G., Drezner, J. A., Gammons, M., Guskiewicz, K. M., Halstead, M., Herring, S. A., Kutcher, J. S., Pana, A., Putukian, M., & Roberts, W. O. (2013). American medical Society for Sports Medicine position statement: Concussion in sport. British Journal of Sports Medicine, 47(1), 15–26.  https://doi.org/10.1136/bjsports-2012-091941.CrossRefGoogle Scholar
  22. Iadecola, C., & Nedergaard, M. (2007). Glial regulation of the cerebral microvasculature. Nature Neuroscience, 10(11), 1369–1376.  https://doi.org/10.1038/nn2003.CrossRefGoogle Scholar
  23. Iverson, G. L., Brooks, B. L., Collins, M. W., & Lovell, M. R. (2006). Tracking neuropsychological recovery following concussion in sport. Brain Injury, 20(3), 245–252.  https://doi.org/10.1080/02699050500487910.CrossRefGoogle Scholar
  24. Jordan, B. D. (2013). The clinical spectrum of sport-related traumatic brain injury. Nature Reviews. Neurology, 9(4), 222–230.  https://doi.org/10.1038/nrneurol.2013.33.CrossRefGoogle Scholar
  25. Junger, E. C., Newell, D. W., Grant, G. A., Avellino, A. M., Ghatan, S., Douville, C. M., et al. (1997). Cerebral autoregulation following minor head injury. Journal of Neurosurgery, 86(3), 425–432.  https://doi.org/10.3171/jns.1997.86.3.0425.CrossRefGoogle Scholar
  26. Len, T. K., & Neary, J. P. (2011). Cerebrovascular pathophysiology following mild traumatic brain injury. Clinical Physiology and Functional Imaging, 31(2), 85–93.  https://doi.org/10.1111/j.1475-097X.2010.00990.x.Google Scholar
  27. Levine, B., Kovacevic, N., Nica, E. I., Cheung, G., Gao, F., Schwartz, M. L., & Black, S. E. (2008). The Toronto traumatic brain injury study: Injury severity and quantified MRI. Neurology, 70(10), 771–778.  https://doi.org/10.1212/01.wnl.0000304108.32283.aa.CrossRefGoogle Scholar
  28. Liu, W., Wang, B., Wolfowitz, R., Yeh, P. H., Nathan, D. E., Graner, J., Tang, H., Pan, H., Harper, J., Pham, D., Oakes, T. R., French, L. M., & Riedy, G. (2013). Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI. NMR in Biomedicine, 26(6), 651–663.  https://doi.org/10.1002/nbm.2910.Google Scholar
  29. Manley, G. T., & Maas, A. I. (2013). Traumatic brain injury: An international knowledge-based approach. JAMA, 310(5), 473–474.  https://doi.org/10.1001/jama.2013.169158.CrossRefGoogle Scholar
  30. McCrea, M., & Guskiewicz, K. (2014). Evidence-based management of sport-related concussion. Progress in Neurological Surgery, 28, 112–127.  https://doi.org/10.1159/000358769.CrossRefGoogle Scholar
  31. McCrea, M., Kelly, J. P., Kluge, J., Ackley, B., & Randolph, C. (1997). Standardized assessment of concussion in football players. Neurology, 48(3), 586–588.CrossRefGoogle Scholar
  32. McCrea, M., Guskiewicz, K. M., Marshall, S. W., Barr, W., Randolph, C., Cantu, R. C., Onate, J. A., Yang, J., & Kelly, J. P. (2003). Acute effects and recovery time following concussion in collegiate football players: The NCAA concussion study. JAMA, 290(19), 2556–2563.  https://doi.org/10.1001/jama.290.19.2556.CrossRefGoogle Scholar
  33. McCrea, M., Prichep, L., Powell, M. R., Chabot, R., & Barr, W. B. (2010). Acute effects and recovery after sport-related concussion: A neurocognitive and quantitative brain electrical activity study. The Journal of Head Trauma Rehabilitation, 25(4), 283–292.  https://doi.org/10.1097/HTR.0b013e3181e67923.CrossRefGoogle Scholar
  34. McCrea, M., Guskiewicz, K., Randolph, C., Barr, W. B., Hammeke, T. A., Marshall, S. W., Powell, M. R., Woo Ahn, K., Wang, Y., & Kelly, J. P. (2013). Incidence, clinical course, and predictors of prolonged recovery time following sport-related concussion in high school and college athletes. Journal of the International Neuropsychological Society, 19(1), 22–33.  https://doi.org/10.1017/S1355617712000872.CrossRefGoogle Scholar
  35. McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R. J., et al. (2013). Consensus statement on concussion in sport: The 4th international conference on concussion in sport held in Zurich, November 2012. British Journal of Sports Medicine, 47(5), 250–258.  https://doi.org/10.1136/bjsports-2013-092313.CrossRefGoogle Scholar
  36. McGoron, A. J., Capille, M., Georgiou, M. F., Sanchez, P., Solano, J., Gonzalez-Brito, M., & Kuluz, J. W. (2008). Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping. BMC Medical Imaging, 8, 4.  https://doi.org/10.1186/1471-2342-8-4.CrossRefGoogle Scholar
  37. Meier, T. B., Bellgowan, P. S., Singh, R., Kuplicki, R., Polanski, D. W., & Mayer, A. R. (2015). Recovery of cerebral blood flow following sports-related concussion. JAMA Neurology, 72(5), 530–538.  https://doi.org/10.1001/jamaneurol.2014.4778.CrossRefGoogle Scholar
  38. Metting, Z., Spikman, J. M., Rodiger, L. A., & van der Naalt, J. (2014). Cerebral perfusion and neuropsychological follow up in mild traumatic brain injury: Acute versus chronic disturbances? Brain and Cognition, 86(0), 24–31,  https://doi.org/10.1016/j.bandc.2014.01.012.
  39. Muir, J. K., Boerschel, M., & Ellis, E. F. (1992). Continuous monitoring of posttraumatic cerebral blood flow using laser-Doppler flowmetry. Journal of Neurotrauma, 9(4), 355–362.  https://doi.org/10.1089/neu.1992.9.355.CrossRefGoogle Scholar
  40. Nencka, A. S., Meier, T. B., Wang, Y., Muftuler, L. T., Wu, Y. C., Saykin, A. J., Harezlak, J., Brooks, M. A., Giza, C. C., Difiori, J., Guskiewicz, K. M., Mihalik, J. P., LaConte, S. M., Duma, S. M., Broglio, S., McAllister, T., McCrea, M. A., & Koch, K. M. (2017). Stability of MRI metrics in the advanced research core of the NCAA-DoD concussion assessment, research and education (CARE) consortium. Brain Imaging and Behavior, 12, 1121–1140.  https://doi.org/10.1007/s11682-017-9775-y.CrossRefGoogle Scholar
  41. Okonkwo, O. C., Xu, G., Oh, J. M., Dowling, N. M., Carlsson, C. M., Gallagher, C. L., Birdsill, A. C., Palotti, M., Wharton, W., Hermann, B. P., LaRue, A., Bendlin, B. B., Rowley, H. A., Asthana, S., Sager, M. A., & Johnson, S. C. (2014). Cerebral blood flow is diminished in asymptomatic middle-aged adults with maternal history of Alzheimer's disease. Cerebral Cortex, 24(4), 978–988.  https://doi.org/10.1093/cercor/bhs381.CrossRefGoogle Scholar
  42. Pasco, A., Lemaire, L., Franconi, F., Lefur, Y., Noury, F., Saint-Andre, J. P., et al. (2007). Perfusional deficit and the dynamics of cerebral edemas in experimental traumatic brain injury using perfusion and diffusion-weighted magnetic resonance imaging. Journal of Neurotrauma, 24(8), 1321–1330.  https://doi.org/10.1089/neu.2006.0136.CrossRefGoogle Scholar
  43. Pop, V., & Badaut, J. (2011). A neurovascular perspective for long-term changes after brain trauma. Translational Stroke Research, 2(4), 533–545.  https://doi.org/10.1007/s12975-011-0126-9.CrossRefGoogle Scholar
  44. Rangel-Castilla, L., Gasco, J., Nauta, H. J., Okonkwo, D. O., & Robertson, C. S. (2008). Cerebral pressure autoregulation in traumatic brain injury. Neurosurgical Focus, 25(4), E7.  https://doi.org/10.3171/FOC.2008.25.10.E7.CrossRefGoogle Scholar
  45. Riemann, B. L., & Guskiewicz, K. M. (2000). Effects of mild head injury on postural stability as measured through clinical balance testing. Journal of Athletic Training, 35(1), 19–25.Google Scholar
  46. Schatz, P., & Maerlender, A. (2013). A two-factor theory for concussion assessment using ImPACT: Memory and speed. Archives of Clinical Neuropsychology, 28(8), 791–797.  https://doi.org/10.1093/arclin/act077.CrossRefGoogle Scholar
  47. Slobounov, S., Gay, M., Johnson, B., & Zhang, K. (2012). Concussion in athletics: Ongoing clinical and brain imaging research controversies. Brain Imaging and Behavior, 6(2), 224–243.  https://doi.org/10.1007/s11682-012-9167-2.CrossRefGoogle Scholar
  48. Strebel, S., Lam, A. M., Matta, B. F., & Newell, D. W. (1997). Impaired cerebral autoregulation after mild brain injury. Surgical Neurology, 47(2), 128–131.CrossRefGoogle Scholar
  49. Tan, C. O., Meehan 3rd, W. P., Iverson, G. L., & Taylor, J. A. (2014). Cerebrovascular regulation, exercise, and mild traumatic brain injury. Neurology, 83(18), 1665–1672.  https://doi.org/10.1212/WNL.0000000000000944.CrossRefGoogle Scholar
  50. Vidorreta, M., Wang, Z., Rodriguez, I., Pastor, M. A., Detre, J. A., & Fernandez-Seara, M. A. (2013). Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Neuroimage, 66, 662–671.  https://doi.org/10.1016/j.neuroimage.2012.10.087.CrossRefGoogle Scholar
  51. Wang, J., Alsop, D. C., Li, L., Listerud, J., Gonzalez-At, J. B., Schnall, M. D., & Detre, J. A. (2002). Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magnetic Resonance in Medicine, 48(2), 242–254.  https://doi.org/10.1002/mrm.10211.CrossRefGoogle Scholar
  52. Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2003a). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49(5), 796–802.  https://doi.org/10.1002/mrm.10437.CrossRefGoogle Scholar
  53. Wang, J., Licht, D. J., Jahng, G. H., Liu, C. S., Rubin, J. T., Haselgrove, J., Zimmerman, R. A., & Detre, J. A. (2003b). Pediatric perfusion imaging using pulsed arterial spin labeling. Journal of Magnetic Resonance Imaging, 18(4), 404–413.  https://doi.org/10.1002/jmri.10372.CrossRefGoogle Scholar
  54. Wang, Y., Saykin, A. J., Pfeuffer, J., Lin, C., Mosier, K. M., Shen, L., Kim, S., & Hutchins, G. D. (2011). Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage, 54(2), 1188–1195.  https://doi.org/10.1016/j.neuroimage.2010.08.043.CrossRefGoogle Scholar
  55. Wang, D. J., Alger, J. R., Qiao, J. X., Hao, Q., Hou, S., Fiaz, R., et al. (2012). The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: Comparison with dynamic susceptibility contrast-enhanced MRI. Stroke, 43(4), 1018–1024.  https://doi.org/10.1161/STROKEAHA.111.631929.CrossRefGoogle Scholar
  56. Wang, Y., West, J. D., Bailey, J. N., Westfall, D. R., Xiao, H., Arnold, T. W., Kersey, P. A., Saykin, A. J., & McDonald, B. C. (2015). Decreased cerebral blood flow in chronic pediatric mild TBI: An MRI perfusion study. Developmental Neuropsychology, 40(1), 40–44.  https://doi.org/10.1080/87565641.2014.979927.CrossRefGoogle Scholar
  57. Wang, Y., Nelson, L. D., LaRoche, A. A., Pfaller, A. Y., Nencka, A. S., Koch, K. M., & McCrea, M. A. (2016). Cerebral blood flow alterations in acute sport-related concussion. Journal of Neurotrauma, 33(13), 1227–1236.  https://doi.org/10.1089/neu.2015.4072.CrossRefGoogle Scholar
  58. Wu, W. C., Fernandez-Seara, M., Detre, J. A., Wehrli, F. W., & Wang, J. (2007). A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magnetic Resonance in Medicine, 58(5), 1020–1027.  https://doi.org/10.1002/mrm.21403.CrossRefGoogle Scholar
  59. Wu, W. C., Lin, S. C., Wang, D. J., Chen, K. L., & Li, Y. D. (2013). Measurement of cerebral white matter perfusion using pseudocontinuous arterial spin labeling 3T magnetic resonance imaging - an experimental and theoretical investigation of feasibility. PLoS One, 8(12), UNSP e82679.  https://doi.org/10.1371/journal.pone.0082679.CrossRefGoogle Scholar
  60. Yamakami, I., & McIntosh, T. K. (1989). Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. Journal of Cerebral Blood Flow and Metabolism, 9(1), 117–124.  https://doi.org/10.1038/jcbfm.1989.16.CrossRefGoogle Scholar
  61. Zhang, R., Zuckerman, J. H., Iwasaki, K., Wilson, T. E., Crandall, C. G., & Levine, B. D. (2002). Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation, 106(14), 1814–1820.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yang Wang
    • 1
    Email author
  • Andrew S. Nencka
    • 1
  • Timothy B. Meier
    • 2
  • Kevin Guskiewicz
    • 3
  • Jason P. Mihalik
    • 3
  • M. Alison Brooks
    • 4
  • Andrew J. Saykin
    • 5
  • Kevin M. Koch
    • 1
  • Yu-Chien Wu
    • 5
  • Lindsay D. Nelson
    • 2
  • Thomas W. McAllister
    • 6
  • Steven P. Broglio
    • 7
  • Michael A. McCrea
    • 2
  1. 1.Department of RadiologyMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of NeurosurgeryMedical College of WisconsinMilwaukeeUSA
  3. 3.Department of Exercise and Sport ScienceUniversity of North CarolinaChapel HillUSA
  4. 4.Department of Orthopedics and RehabilitationUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  5. 5.Department of Radiology and Imaging ScienceIndiana University School of MedicineIndianapolisUSA
  6. 6.Department of PsychiatryIndiana University School of MedicineIndianapolisUSA
  7. 7.School of KinesiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations