Advertisement

Brain Imaging and Behavior

, Volume 13, Issue 5, pp 1265–1272 | Cite as

White matter hyperintensities are associated with falls in older people with dementia

  • Morag E. TaylorEmail author
  • Stephen R. Lord
  • Kim Delbaere
  • Wei Wen
  • Jiyang Jiang
  • Henry Brodaty
  • Susan E. Kurrle
  • A. Stefanie Mikolaizak
  • Jacqueline C. T. Close
Original Research
  • 304 Downloads

Abstract

White Matter Hyperintensities (WMHs) are associated with impaired gait, balance and cognition and increased fall risk in cognitively healthy older people. However, few studies have examined such relationships in older people with dementia. Understanding the role of WMHs in falls may assist in developing effective fall prevention strategies. We investigated the relationship between baseline WMHs, cognitive and sensorimotor function and prospective falls in older people with dementia. Twenty-eight community-dwelling older people with mild-moderate dementia (MMSE 11–23; ACE-R < 83) underwent magnetic resonance imaging and assessment of sensorimotor and cognitive (global and processing speed) function at baseline. WMHs, were quantified using a fully automated segmentation toolbox, UBO Detector (https://cheba.unsw.edu.au/group/neuroimaging-pipeline). Falls were ascertained prospectively for 12-months using monthly calendars with the assistance of carers. The median age of the participants was 83 years (IQR 77–86); 36% were female; 21 (75%) fell during follow-up. Using Generalized Linear Models, larger volumes of total WMHs were found to be significantly associated with poorer global cognitive and sensorimotor function. Using modified Poisson regression, total, periventricular and deep WMHs were each associated with future falls while controlling for age, sex, intracranial volume and vascular risk. Each standard deviation increase in total and periventricular WMH volume resulted in a 33% (RR 1.33 95%CI 1.07–1.66) and 30% (RR 1.30 95%CI 1.06–1.60) increased risk of falling, respectively. When the deep WMH volume z-scores were dichotomized at the median, individuals with greater deep WMH volumes had an 81% (RR 1.81 95% CI 1.02–3.21) increased risk of falling. WMHs were associated with poorer sensorimotor and cognitive function in people with dementia and total, periventricular and deep WMHs were associated with falls. Further research is needed to confirm these preliminary findings and explore the impact of vascular risk reduction strategies on WMHs, functional performance and falls.

Keywords

Dementia Cognitive impairment Accidental falls White matter hyperintensities Leukoaraiosis Sensorimotor function 

Notes

Funding

This work was supported by the Australian National Health and Medical Research Council (NHMRC) (grant number 455368) and the NHMRC Cognitive Decline Partnership Centre (grant number 9100000). This manuscript does not reflect the views of the NHMRC or funding partners. Dr. Morag Taylor is a NHMRC-Australian Research Council Dementia Research Development Fellow. A/Prof Kim Delbaere is a NHMRC Career Development Fellow. Prof Stephen Lord is a NHMRC Senior Principal Research Fellow.

Compliance with ethical standards

Conflict of interest

The Physiological Profile Assessment (FallScreen) is commercially available through Neuroscience Research Australia (NeuRA). Professor Henry Brodaty holds a position on the advisory board for Nutricia.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individuals, and their person responsible, included in the study.

References

  1. Altamura, C., Scrascia, F., Quattrocchi, C. C., Errante, Y., Gangemi, E., Curcio, G., Ursini, F., Silvestrini, M., Maggio, P., Beomonte Zobel, B., Rossini, P. M., Pasqualetti, P., Falsetti, L., & Vernieri, F. (2016). Regional MRI diffusion, white-matter hyperintensities, and cognitive function in Alzheimer's disease and vascular dementia. Journal of Clinical Neurology, 12(2), 201–208.  https://doi.org/10.3988/jcn.2016.12.2.201.CrossRefGoogle Scholar
  2. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.  https://doi.org/10.1016/j.neuroimage.2007.07.007.CrossRefGoogle Scholar
  3. Baezner, H., Blahak, C., Poggesi, A., Pantoni, L., Inzitari, D., Chabriat, H., Erkinjuntti, T., Fazekas, F., Ferro, J. M., Langhorne, P., O'Brien, J., Scheltens, P., Visser, M. C., Wahlund, L. O., Waldemar, G., Wallin, A., Hennerici, M. G., & On behalf of the LADIS Study Group. (2008). Association of gait and balance disorders with age-related white matter changes: The LADIS study. Neurology, 70(12), 935–942.  https://doi.org/10.1212/01.wnl.0000305959.46197.e6.CrossRefGoogle Scholar
  4. Bennett, D. A., Gilley, D. W., Wilson, R. S., Huckman, M. S., & Fox, J. H. (1992). Clinical correlates of high signal lesions on magnetic-resonance-imaging in Alzheimers-disease. Journal of Neurology, 239(4), 186–190.  https://doi.org/10.1007/bf00839137.CrossRefGoogle Scholar
  5. Burton, E. J., McKeith, I. G., Burn, D. J., Firbank, M. J., & O'Brien, J. T. (2006). Progression of white matter Hyperintensities in Alzheimer disease, dementia with Lewy bodies, and Parkinson disease dementia: A comparison with normal aging. The American Journal of Geriatric Psychiatry, 14(10), 842–849.  https://doi.org/10.1097/01.JGP.0000236596.56982.1c.CrossRefGoogle Scholar
  6. Delbaere, K., Close, J. C., Heim, J., Sachdev, P. S., Brodaty, H., Slavin, M. J., et al. (2010). A multifactorial approach to understanding fall risk in older people. Journal of the American Geriatrics Society, 58(9), 1679–1685.  https://doi.org/10.1111/j.1532-5415.2010.03017.x.CrossRefGoogle Scholar
  7. Dickie, D. A., Ritchie, S. J., Cox, S. R., Sakka, E., Royle, N. A., Aribisala, B. S., Valdés Hernández, M. C., Maniega, S. M., Pattie, A., Corley, J., Starr, J. M., Bastin, M. E., Deary, I. J., & Wardlaw, J. M. (2016). Vascular risk factors and progression of white matter hyperintensities in the Lothian birth cohort 1936. Neurobiology of Aging, 42, 116–123.  https://doi.org/10.1016/j.neurobiolaging.2016.03.011.CrossRefGoogle Scholar
  8. Harvey, L., Mitchell, R., Brodaty, H., Draper, B., & Close, J. (2016). The influence of dementia on injury-related hospitalisations and outcomes in older adults. Injury, 47(1), 226–234.  https://doi.org/10.1016/j.injury.2015.09.021.CrossRefGoogle Scholar
  9. Hirono, N., Kitagaki, H., Kazui, H., Hashimoto, M., & Mori, E. (2000). Impact of white matter changes on clinical manifestation of Alzheimer's disease: A quantitative study. Stroke, 31(9), 2182–2188.  https://doi.org/10.1161/01.STR.31.9.2182.CrossRefGoogle Scholar
  10. Horikawa, E., Matsui, T., Arai, H., Seki, T., Iwasaki, K., & Sasaki, H. (2005). Risk of falls in Alzheimer's disease: A prospective study. Internal Medicine, 44(7), 717–721.  https://doi.org/10.2169/internalmedicine.44.717.CrossRefGoogle Scholar
  11. Jiang, J., Liu, T., Zhu, W., Koncz, R., Liu, H., Lee, T., Sachdev, P. S., & Wen, W. (2018). UBO detector – A cluster-based, fully automated pipeline for extracting white matter hyperintensities. Neuroimage, 174, 539–549.  https://doi.org/10.1016/j.neuroimage.2018.03.050.CrossRefGoogle Scholar
  12. Kloppenborg, R. P., Nederkoorn, P. J., Geerlings, M. I., & van den Berg, E. (2014). Presence and progression of white matter hyperintensities and cognition: A meta-analysis. Neurology, 82(23), 2127–2138.  https://doi.org/10.1212/WNL.0000000000000505.CrossRefGoogle Scholar
  13. Lamb, S. E., Jorstad-Stein, E. C., Hauer, K., & Becker, C. (2005). Development of a common outcome data set for fall injury prevention trials: The prevention of falls network Europe consensus. Journal of the American Geriatrics Society, 53(9), 1618–1622.  https://doi.org/10.1111/j.1532-5415.2005.53455.x.CrossRefGoogle Scholar
  14. Lord, S. R., Menz, H. B., & Tiedemann, A. (2003). A physiological profile approach to falls risk assessment and prevention. Physical Therapy, 83(3), 237–252.  https://doi.org/10.1093/ptj/83.3.237.Google Scholar
  15. Martin, K. L., Blizzard, L., Srikanth, V. K., Wood, A., Thomson, R., Sanders, L. M., & Callisaya, M. L. (2013). Cognitive function modifies the effect of physiological function on the risk of multiple falls--a population-based study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 68(9), 1091–1097.  https://doi.org/10.1093/gerona/glt010.CrossRefGoogle Scholar
  16. McAleese, K. E., Alafuzoff, I., Charidimou, A., De Reuck, J., Grinberg, L. T., Hainsworth, A. H., et al. (2016). Post-mortem assessment in vascular dementia: Advances and aspirations. BMC Medicine, 14(1), 129.  https://doi.org/10.1186/s12916-016-0676-5.CrossRefGoogle Scholar
  17. Mioshi, E., Dawson, K., Mitchell, J., Arnold, R., & Hodges, J. R. (2006). The Addenbrooke's cognitive examination revised (ACE-R): A brief cognitive test battery for dementia screening. International Journal of Geriatric Psychiatry, 21(11), 1078–1085.  https://doi.org/10.1002/gps.1610.CrossRefGoogle Scholar
  18. Mirelman, A., Herman, T., Brozgol, M., Dorfman, M., Sprecher, E., Schweiger, A., Giladi, N., & Hausdorff, J. M. (2012). Executive function and falls in older adults: New findings from a five-year prospective study link fall risk to cognition. PLoS One, 7(6), e40297.  https://doi.org/10.1371/journal.pone.0040297.CrossRefGoogle Scholar
  19. Nadkarni, N. K., McIlroy, W. E., Mawji, E., & Black, S. E. (2009). Gait and subcortical hyperintensities in mild Alzheimer's disease and aging. Dementia and Geriatric Cognitive Disorders, 28(4), 295–301.  https://doi.org/10.1159/000245158.CrossRefGoogle Scholar
  20. Ogama, N., Sakurai, T., Shimizu, A., & Toba, K. (2014). Regional white matter lesions predict falls in patients with amnestic mild cognitive impairment and alzheimer's disease. Journal of the American Medical Directors Association, 15(1), 36–41.  https://doi.org/10.1016/j.jamda.2013.11.004.CrossRefGoogle Scholar
  21. Prins, N. D., & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: An update. Nature Reviews Neurology, 11(3), 157–165.  https://doi.org/10.1038/nrneurol.2015.10.CrossRefGoogle Scholar
  22. Ramirez, J., McNeely, A. A., Scott, C. J. M., Stuss, D. T., & Black, S. E. (2014). Subcortical hyperintensity volumetrics in Alzheimer's disease and normal elderly in the Sunnybrook dementia study: Correlations with atrophy, executive function, mental processing speed, and verbal memory. Alzheimer's Research & Therapy, 6(4), 12.  https://doi.org/10.1186/alzrt279.CrossRefGoogle Scholar
  23. Sarro, L., Tosakulwong, N., Schwarz, C. G., Graff-Radford, J., Przybelski, S. A., Lesnick, T. G., Zuk, S. M., Reid, R. I., Raman, M. R., Boeve, B. F., Ferman, T. J., Knopman, D. S., Comi, G., Filippi, M., Murray, M. E., Parisi, J. E., Dickson, D. W., Petersen, R. C., Jack Jr., C. R., & Kantarci, K. (2017). An investigation of cerebrovascular lesions in dementia with Lewy bodies compared to Alzheimer's disease. Alzheimer's & Dementia, 13(3), 257–266.  https://doi.org/10.1016/j.jalz.2016.07.003.CrossRefGoogle Scholar
  24. Srikanth, V., Beare, R., Blizzard, L., Phan, T., Stapleton, J., Chen, J., Callisaya, M., Martin, K., & Reutens, D. (2009). Cerebral white matter lesions, gait, and the risk of incident falls: A prospective population-based study. Stroke, 40(1), 175–180.  https://doi.org/10.1161/STROKEAHA.108.524355.CrossRefGoogle Scholar
  25. Taylor, M. E., Lord, S. R., Delbaere, K., Mikolaizak, A. S., & Close, J. C. T. (2012). Physiological fall risk factors in cognitively impaired older people: A one-year prospective study. Dementia and Geriatric Cognitive Disorders, 34(3–4), 181–189.  https://doi.org/10.1159/000343077.CrossRefGoogle Scholar
  26. Taylor, M. E., Delbaere, K., Lord, S. R., Mikolaizak, A. S., Brodaty, H., & Close, J. C. (2014). Neuropsychological, physical, and functional mobility measures associated with falls in cognitively impaired older adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(8), 987–995.  https://doi.org/10.1093/gerona/glt166.CrossRefGoogle Scholar
  27. Taylor, M. E., Lord, S. R., Delbaere, K., Kurrle, S. E., Mikolaizak, A. S., & Close, J. C. T. (2017). Reaction time and postural sway modify the effect of executive function on risk of falls in older people with mild to moderate cognitive impairment. The American Journal of Geriatric Psychiatry, 25(4), 397–406.  https://doi.org/10.1016/j.jagp.2016.10.010.CrossRefGoogle Scholar
  28. Tombaugh, T. N. (2004). Trail making test a and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203–214.  https://doi.org/10.1016/S0887-6177(03)00039-8.CrossRefGoogle Scholar
  29. Tuladhar, A. M., van Norden, A. G. W., de Laat, K. F., Zwiers, M. P., van Dijk, E. J., Norris, D. G., & de Leeuw, F. E. (2015). White matter integrity in small vessel disease is related to cognition. Neuroimage: Clinical, 7, 518–524.  https://doi.org/10.1016/j.nicl.2015.02.003.CrossRefGoogle Scholar
  30. van der Vlies, A. E., Staekenborg, S. S., Admiraal-Behloul, F., Prins, N. D., Barkhof, F., Vrenken, H., Reiber, J. H. C., Scheltens, P., & van der Flier, W. M. (2013). Associations between magnetic resonance imaging measures and neuropsychological impairment in early and late onset alzheimer's disease. Journal of Alzheimer's Disease, 35(1), 169–178.  https://doi.org/10.3233/jad-121291.CrossRefGoogle Scholar
  31. van Straaten, E. C. W., Fazekas, F., Rostrup, E., Scheltens, P., Schmidt, R., Pantoni, L., Inzitari, D., Waldemar, G., Erkinjuntti, T., Mantyla, R., Wahlund, L. O., Barkhof, F., & on behalf of the LADIS Group. (2006). Impact of white matter hyperintensities scoring method on correlations with clinical data: The LADIS study. Stroke, 37(3), 836–840.  https://doi.org/10.1161/01.str.0000202585.26325.74.CrossRefGoogle Scholar
  32. van Uden, I. W., van der Holst, H. M., Tuladhar, A. M., van Norden, A. G., de Laat, K. F., Rutten-Jacobs, L. C., et al. (2016). White matter and hippocampal volume predict the risk of dementia in patients with cerebral small vessel disease: The RUN DMC study. Journal of Alzheimer's Disease, 49(3), 863–873.  https://doi.org/10.3233/jad-150573.CrossRefGoogle Scholar
  33. Wahlund, L. O., Basun, H., Almkvist, O., Andersson-Lundman, G., Julin, P., & Saaf, J. (1994). White matter hyperintensities in dementia: Does it matter? Magnetic Resonance Imaging, 12(3), 387–394.CrossRefGoogle Scholar
  34. Zheng, J. J., Lord, S. R., Close, J. C., Sachdev, P. S., Wen, W., Brodaty, H., et al. (2012). Brain white matter hyperintensities, executive dysfunction, instability, and falls in older people: A prospective cohort study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 67(10), 1085–1091.  https://doi.org/10.1093/gerona/gls063.CrossRefGoogle Scholar
  35. Zou, G. (2004). A modified Poisson regression approach to prospective studies with binary data. American Journal of Epidemiology, 159(7), 702–706.  https://doi.org/10.1093/aje/kwh090.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Morag E. Taylor
    • 1
    • 2
    • 3
    Email author
  • Stephen R. Lord
    • 1
    • 4
  • Kim Delbaere
    • 1
    • 4
  • Wei Wen
    • 5
    • 6
  • Jiyang Jiang
    • 5
    • 6
  • Henry Brodaty
    • 6
    • 7
  • Susan E. Kurrle
    • 2
  • A. Stefanie Mikolaizak
    • 8
  • Jacqueline C. T. Close
    • 1
    • 3
  1. 1.Falls, Balance and Injury Research Centre, Neuroscience Research AustraliaUniversity of New South WalesSydneyAustralia
  2. 2.Cognitive Decline Partnership Centre, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
  3. 3.Prince of Wales Clinical School, MedicineUniversity of New South WalesSydneyAustralia
  4. 4.School of Public Health and Community Medicine, MedicineUniversity of New South WalesSydneyAustralia
  5. 5.Neuropsychiatric InstitutePrince of Wales HospitalRandwickAustralia
  6. 6.Centre for Healthy Brain Ageing, School of Psychiatry, MedicineUniversity of New South WalesSydneyAustralia
  7. 7.Dementia Centre for Research Collaboration, School of Psychiatry, MedicineUniversity of New South WalesSydneyAustralia
  8. 8.Department of Clinical GerontologyRobert-Bosch-HospitalStuttgartGermany

Personalised recommendations