Advertisement

Brain Imaging and Behavior

, Volume 13, Issue 5, pp 1220–1235 | Cite as

Altered intra- and inter-hemispheric functional dysconnectivity in schizophrenia

  • Yuan Zhang
  • Zhongxiang Dai
  • Yu Chen
  • Kang Sim
  • Yu SunEmail author
  • Rongjun YuEmail author
Original Research

Abstract

Despite convergent evidence suggesting that schizophrenia is a disorder of brain dysconnectivity, it remains unclear whether intra- or inter-hemispheric deficits or their combination underlie the dysconnection. This study examined the source of the functional dysconnection in schizophrenia. Resting-state fMRI was performed in 66 patients with schizophrenia and 73 matched healthy controls. Functional brain networks were constructed for each participant and further partitioned into intra- and inter-hemispheric connections. We examined how schizophrenia altered the intra-hemispheric topological properties and the inter-hemispheric nodal strength. Although several subcortical and cingulate regions exhibited hemispheric-independent aberrations of regional efficiency, the optimal small-world properties in the hemispheric networks and their lateralization were preserved in patients. A significant deficit in the inter-hemispheric connectivity was revealed in most of the hub regions, leading to an inter-hemispheric hypo-connectivity pattern in patients. These abnormal intra- and inter-hemispheric network organizations were associated with the clinical features of schizophrenia. The patients in the present study received different medications. These findings provide new insights into the nature of dysconnectivity in schizophrenia, highlighting the dissociable processes between the preserved intra-hemispheric network topology and altered inter-hemispheric functional connectivity.

Keywords

Schizophrenia Hemispheric asymmetry Inter-hemispheric connectivity Resting-state functional connectivity Graph theory 

Notes

Compliance with ethical standards

Conflict of interest

The authors have nothing to disclose.

Sources of support

This work was supported by Zhejiang University (“Hundred Talents Program” awarded to Y. S.), by the Fundamental Research Funds for the Central Universities (Grant no. 2018QNA5017 awarded to Y.S.), and by the Ministry of Education of Singapore (MOE2016-T2–1-015 awarded to R. Y.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients included in the study.

References

  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.  https://doi.org/10.1371/journal.pcbi.0030017.Google Scholar
  2. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1), 63–72.  https://doi.org/10.1523/JNEUROSCI.3874-05.2006.Google Scholar
  3. Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot, R., Giedd, J., & Bullmore, E. T. (2010). Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in Systems Neuroscience, 4, 147.  https://doi.org/10.3389/fnsys.2010.00147.Google Scholar
  4. Alexander-Bloch, A. F., Vertes, P. E., Stidd, R., Lalonde, F., Clasen, L., Rapoport, J., et al. (2013). The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cerebral Cortex, 23(1), 127–138.  https://doi.org/10.1093/cercor/bhr388.Google Scholar
  5. Ananth, H., Popescu, I., Critchley, H. D., Good, C. D., Frackowiak, R. S., & Dolan, R. J. (2002). Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. The American Journal of Psychiatry, 159(9), 1497–1505.  https://doi.org/10.1176/appi.ajp.159.9.1497.Google Scholar
  6. Anderson, J. S., Druzgal, T. J., Lopez-Larson, M., Jeong, E. K., Desai, K., & Yurgelun-Todd, D. (2011). Network anticorrelations, global regression, and phase-shifted soft tissue correction. Human Brain Mapping, 32(6), 919–934.  https://doi.org/10.1002/hbm.21079.Google Scholar
  7. Arslan, S., Ktena, S. I., Makropoulos, A., Robinson, E. C., Rueckert, D., & Parisot, S. (2017). Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex. Neuroimage, 170, 5–30.  https://doi.org/10.1016/j.neuroimage.2017.04.014.Google Scholar
  8. Artiges, E., Martinot, J. L., Verdys, M., Attar-Levy, D., Mazoyer, B., Tzourio, N., Giraud, M. J., & Paillere-Martinot, M. L. (2000). Altered hemispheric functional dominance during word generation in negative schizophrenia. Schizophrenia Bulletin, 26(3), 709–721.Google Scholar
  9. Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., Wang, J., Xia, M., He, Y., & Zhang, Z. (2012). Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. The Journal of Neuroscience, 32(12), 4307–4318.  https://doi.org/10.1523/JNEUROSCI.5061-11.2012.Google Scholar
  10. Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J., & Lim, K. O. (2012). Altered resting state complexity in schizophrenia. Neuroimage, 59(3), 2196–2207.  https://doi.org/10.1016/j.neuroimage.2011.10.002.Google Scholar
  11. Bleich-Cohen, M., Hendler, T., Kotler, M., & Strous, R. D. (2009). Reduced language lateralization in first-episode schizophrenia: An fMRI index of functional asymmetry. Psychiatry Research, 171(2), 82–93.  https://doi.org/10.1016/j.pscychresns.2008.03.002.Google Scholar
  12. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.  https://doi.org/10.1038/nrn2575.Google Scholar
  13. Butler, P. D., Silverstein, S. M., & Dakin, S. C. (2008). Visual perception and its impairment in schizophrenia. Biological Psychiatry, 64(1), 40–47.  https://doi.org/10.1016/j.biopsych.2008.03.023.Google Scholar
  14. Cocchi, L., Harding, I. H., Lord, A., Pantelis, C., Yucel, M., & Zalesky, A. (2014). Disruption of structure-function coupling in the schizophrenia connectome. Neuroimage Clinical, 4, 779–787.  https://doi.org/10.1016/j.nicl.2014.05.004.Google Scholar
  15. Collin, G., Kahn, R. S., de Reus, M. A., Cahn, W., & van den Heuvel, M. P. (2014). Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophrenia Bulletin, 40(2), 438–448.  https://doi.org/10.1093/schbul/sbt162.Google Scholar
  16. Collinson, S. L., Mackay, C. E., O, J., James, A. C., & Crow, T. J. (2009). Dichotic listening impairments in early onset schizophrenia are associated with reduced left temporal lobe volume. Schizophrenia Research, 112(1–3), 24–31.  https://doi.org/10.1016/j.schres.2009.03.034.Google Scholar
  17. Crespo-Facorro, B., Nopoulos, P. C., Chemerinski, E., Kim, J. J., Andreasen, N. C., & Magnotta, V. (2004). Temporal pole morphology and psychopathology in males with schizophrenia. Psychiatry Research, 132(2), 107–115.  https://doi.org/10.1016/j.pscychresns.2004.09.002.Google Scholar
  18. Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure & Function, 213(6), 525–533.  https://doi.org/10.1007/s00429-009-0208-6.Google Scholar
  19. David, A. S., Malmberg, A., Brandt, L., Allebeck, P., & Lewis, G. (1997). IQ and risk for schizophrenia: A population-based cohort study. Psychological Medicine, 27(6), 1311–1323.Google Scholar
  20. Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1–3), 3–10.  https://doi.org/10.1016/j.schres.2008.11.021.Google Scholar
  21. Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T., & Carter, C. S. (2011). General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biological Psychiatry, 70(1), 64–72.  https://doi.org/10.1016/j.biopsych.2011.02.019.Google Scholar
  22. Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. Neuroimage, 62(4), 2296–2314.  https://doi.org/10.1016/j.neuroimage.2011.12.090.Google Scholar
  23. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711.  https://doi.org/10.1038/nrn2201.Google Scholar
  24. Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176(2–3), 83–94.  https://doi.org/10.1016/j.schres.2016.07.014.Google Scholar
  25. Gotts, S. J., Jo, H. J., Wallace, G. L., Saad, Z. S., Cox, R. W., & Martin, A. (2013). Two distinct forms of functional lateralization in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 110(36), E3435–E3444.  https://doi.org/10.1073/pnas.1302581110.Google Scholar
  26. Guo, S., Kendrick, K. M., Zhang, J., Broome, M., Yu, R., Liu, Z., & Feng, J. (2013). Brain-wide functional inter-hemispheric disconnection is a potential biomarker for schizophrenia and distinguishes it from depression. Neuroimage Clinical, 2, 818–826.  https://doi.org/10.1016/j.nicl.2013.06.008.Google Scholar
  27. Guo, W., Xiao, C., Liu, G., Wooderson, S. C., Zhang, Z., Zhang, J., Yu, L., & Liu, J. (2014). Decreased resting-state interhemispheric coordination in first-episode, drug-naive paranoid schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 48, 14–19.  https://doi.org/10.1016/j.pnpbp.2013.09.012.Google Scholar
  28. Gur, R. E., Turetsky, B. I., Cowell, P. E., Finkelman, C., Maany, V., Grossman, R. I., Arnold, S. E., Bilker, W. B., & Gur, R. C. (2000). Temporolimbic volume reductions in schizophrenia. Archives of General Psychiatry, 57(8), 769–775.Google Scholar
  29. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.  https://doi.org/10.1371/journal.pbio.0060159.Google Scholar
  30. He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23(4), 341–350.  https://doi.org/10.1097/WCO.0b013e32833aa567.Google Scholar
  31. He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. The Journal of Neuroscience, 28(18), 4756–4766.  https://doi.org/10.1523/JNEUROSCI.0141-08.2008.Google Scholar
  32. He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q., Zang, Y., & Evans, A. C. (2009). Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One, 4(4), e5226.  https://doi.org/10.1371/journal.pone.0005226.Google Scholar
  33. Hoffman, R. E., Fernandez, T., Pittman, B., & Hampson, M. (2011). Elevated functional connectivity along a corticostriatal loop and the mechanism of auditory/verbal hallucinations in patients with schizophrenia. Biological Psychiatry, 69(5), 407–414.  https://doi.org/10.1016/j.biopsych.2010.09.050.Google Scholar
  34. Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 2035–2040.  https://doi.org/10.1073/pnas.0811168106.Google Scholar
  35. Hoptman, M. J., Zuo, X. N., D'Angelo, D., Mauro, C. J., Butler, P. D., Milham, M. P., & Javitt, D. C. (2012). Decreased interhemispheric coordination in schizophrenia: A resting state fMRI study. Schizophrenia Research, 141(1), 1–7.  https://doi.org/10.1016/j.schres.2012.07.027.Google Scholar
  36. Howes, O. D., & Murray, R. M. (2014). Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet, 383(9929), 1677–1687.  https://doi.org/10.1016/S0140-6736(13)62036-X.Google Scholar
  37. Humphries, M. D., Gurney, K., & Prescott, T. J. (2006). The brainstem reticular formation is a small-world, not scale-free, network. Proceedings of the Biological Sciences, 273(1585), 503–511.  https://doi.org/10.1098/rspb.2005.3354.Google Scholar
  38. Iturria-Medina, Y., Perez Fernandez, A., Morris, D. M., Canales-Rodriguez, E. J., Haroon, H. A., Garcia Penton, L., et al. (2011). Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cerebral Cortex, 21(1), 56–67.  https://doi.org/10.1093/cercor/bhq058.Google Scholar
  39. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.Google Scholar
  40. Kasai, K., Shenton, M. E., Salisbury, D. F., Onitsuka, T., Toner, S. K., Yurgelun-Todd, D., Kikinis, R., Jolesz, F. A., & McCarley, R. W. (2003). Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Archives of General Psychiatry, 60(11), 1069–1077.  https://doi.org/10.1001/archpsyc.60.11.1069.Google Scholar
  41. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.Google Scholar
  42. Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 1393–1406.Google Scholar
  43. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701.  https://doi.org/10.1103/PhysRevLett.87.198701.Google Scholar
  44. Liu, H., Liu, Z., Liang, M., Hao, Y., Tan, L., Kuang, F., Yi, Y., Xu, L., & Jiang, T. (2006). Decreased regional homogeneity in schizophrenia: A resting state functional magnetic resonance imaging study. Neuroreport, 17(1), 19–22.Google Scholar
  45. Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., & Jiang, T. (2008). Disrupted small-world networks in schizophrenia. Brain, 131(Pt 4), 945–961.  https://doi.org/10.1093/brain/awn018.Google Scholar
  46. Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. The Journal of Neuroscience, 30(28), 9477–9487.  https://doi.org/10.1523/JNEUROSCI.0333-10.2010.Google Scholar
  47. Maslov, S., & Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296(5569), 910–913.  https://doi.org/10.1126/science.1065103.Google Scholar
  48. Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., & Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neuropsychology, 23(3), 315–336.  https://doi.org/10.1037/a0014708.Google Scholar
  49. Mesulam, M. M. (1998). From sensation to cognition. Brain, 121(Pt 6), 1013–1052.Google Scholar
  50. Navari, S., & Dazzan, P. (2009). Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychological Medicine, 39(11), 1763–1777.  https://doi.org/10.1017/S0033291709005315.Google Scholar
  51. Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(Pt 7), 1718–1731.  https://doi.org/10.1093/brain/awm052.Google Scholar
  52. Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience and Biobehavioral Reviews, 35(5), 1110–1124.  https://doi.org/10.1016/j.neubiorev.2010.11.004.Google Scholar
  53. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018.Google Scholar
  54. Razafimandimby, A., Maiza, O., Herve, P. Y., Lecardeur, L., Delamillieure, P., Brazo, P., et al. (2007). Stability of functional language lateralization over time in schizophrenia patients. Schizophrenia Research, 94(1–3), 197–206.  https://doi.org/10.1016/j.schres.2007.04.011.Google Scholar
  55. Repovs, G., Csernansky, J. G., & Barch, D. M. (2011). Brain network connectivity in individuals with schizophrenia and their siblings. Biological Psychiatry, 69(10), 967–973.  https://doi.org/10.1016/j.biopsych.2010.11.009.Google Scholar
  56. Ribolsi, M., Koch, G., Magni, V., Di Lorenzo, G., Rubino, I. A., Siracusano, A., & Centonze, D. (2009). Abnormal brain lateralization and connectivity in schizophrenia. Reviews in the Neurosciences, 20(1), 61–70.Google Scholar
  57. Rimol, L. M., Hartberg, C. B., Nesvag, R., Fennema-Notestine, C., Hagler Jr., D. J., Pung, C. J., et al. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 68(1), 41–50.  https://doi.org/10.1016/j.biopsych.2010.03.036.Google Scholar
  58. Rubinov, M., & Bullmore, E. (2013). Schizophrenia and abnormal brain network hubs. Dialogues in Clinical Neuroscience, 15(3), 339–349.Google Scholar
  59. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069.  https://doi.org/10.1016/j.neuroimage.2009.10.003.Google Scholar
  60. Rubinov, M., Knock, S. A., Stam, C. J., Micheloyannis, S., Harris, A. W., Williams, L. M., & Breakspear, M. (2009). Small-world properties of nonlinear brain activity in schizophrenia. Human Brain Mapping, 30(2), 403–416.  https://doi.org/10.1002/hbm.20517.Google Scholar
  61. Salvador, R., Sarro, S., Gomar, J. J., Ortiz-Gil, J., Vila, F., Capdevila, A., et al. (2010). Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia. Human Brain Mapping, 31(12), 2003–2014.  https://doi.org/10.1002/hbm.20993.Google Scholar
  62. Shapleske, J., Rossell, S. L., Chitnis, X. A., Suckling, J., Simmons, A., Bullmore, E. T., et al. (2002). A computational morphometric MRI study of schizophrenia: Effects of hallucinations. Cerebral Cortex, 12(12), 1331–1341.Google Scholar
  63. Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49(1–2), 1–52.Google Scholar
  64. Skudlarski, P., Jagannathan, K., Anderson, K., Stevens, M. C., Calhoun, V. D., Skudlarska, B. A., & Pearlson, G. (2010). Brain connectivity is not only lower but different in schizophrenia: A combined anatomical and functional approach. Biological Psychiatry, 68(1), 61–69.  https://doi.org/10.1016/j.biopsych.2010.03.035.Google Scholar
  65. Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., & Woolrich, M. W. (2011). Network modelling methods for FMRI. Neuroimage, 54(2), 875–891.  https://doi.org/10.1016/j.neuroimage.2010.08.063.Google Scholar
  66. Sommer, I., Ramsey, N., Kahn, R., Aleman, A., & Bouma, A. (2001). Handedness, language lateralisation and anatomical asymmetry in schizophrenia: Meta-analysis. The British Journal of Psychiatry, 178, 344–351.Google Scholar
  67. Sporns, O. (2011). The human connectome: A complex network. Annals of the New York Academy of Sciences, 1224, 109–125.  https://doi.org/10.1111/j.1749-6632.2010.05888.x.Google Scholar
  68. Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2(2), 145–162.  https://doi.org/10.1385/NI:2:2:145.Google Scholar
  69. Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509–527.  https://doi.org/10.1093/schbul/sbn176.Google Scholar
  70. Sun, Y., Yin, Q., Fang, R., Yan, X., Wang, Y., Bezerianos, A., Tang, H., Miao, F., & Sun, J. (2014). Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer's disease. PLoS One, 9(5), e96505.  https://doi.org/10.1371/journal.pone.0096505.Google Scholar
  71. Sun, Y., Chen, Y., Collinson, S. L., Bezerianos, A., & Sim, K. (2017a). Reduced hemispheric asymmetry of brain anatomical networks is linked to schizophrenia: A connectome study. Cerebral Cortex, 27(1), 602–615.  https://doi.org/10.1093/cercor/bhv255.Google Scholar
  72. Sun, Y., Dai, Z., Li, J., Collinson, S. L., & Sim, K. (2017b). Modular-level alterations of structure-function coupling in schizophrenia connectome. Human Brain Mapping, 38(4), 2008–2025.  https://doi.org/10.1002/hbm.23501.Google Scholar
  73. Sun, Y., Li, J., Suckling, J., & Feng, L. (2017c). Asymmetry of hemispheric network topology reveals dissociable processes between functional and structural brain connectome in community-living elders. Frontiers in Aging Neuroscience, 9, 361.  https://doi.org/10.3389/fnagi.2017.00361.Google Scholar
  74. Thompson, S. A., Patterson, K., & Hodges, J. R. (2003). Left/right asymmetry of atrophy in semantic dementia: Behavioral-cognitive implications. Neurology, 61(9), 1196–1203.Google Scholar
  75. Tian, L., Wang, J., Yan, C., & He, Y. (2011). Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study. Neuroimage, 54(1), 191–202.  https://doi.org/10.1016/j.neuroimage.2010.07.066.Google Scholar
  76. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.  https://doi.org/10.1006/nimg.2001.0978.Google Scholar
  77. van den Heuvel, M. P., & Fornito, A. (2014). Brain networks in schizophrenia. Neuropsychology Review, 24(1), 32–48.  https://doi.org/10.1007/s11065-014-9248-7.Google Scholar
  78. van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. The Journal of Neuroscience, 29(23), 7619–7624.  https://doi.org/10.1523/JNEUROSCI.1443-09.2009.Google Scholar
  79. van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., et al. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792.  https://doi.org/10.1001/jamapsychiatry.2013.1328.Google Scholar
  80. Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59(1), 431–438.  https://doi.org/10.1016/j.neuroimage.2011.07.044.Google Scholar
  81. van Erp, T. G., Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O. A., et al. (2016). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 585.  https://doi.org/10.1038/mp.2015.118.Google Scholar
  82. Wang, L., Metzak, P. D., Honer, W. G., & Woodward, T. S. (2010). Impaired efficiency of functional networks underlying episodic memory-for-context in schizophrenia. The Journal of Neuroscience, 30(39), 13171–13179.  https://doi.org/10.1523/JNEUROSCI.3514-10.2010.Google Scholar
  83. Wang, Z., Dai, Z., Gong, G., Zhou, C., & He, Y. (2015). Understanding structural-functional relationships in the human brain: A large-scale network perspective. Neuroscientist, 21(3), 290–305.  https://doi.org/10.1177/1073858414537560.Google Scholar
  84. Wang, X., Zhang, Y., Long, Z., Zheng, J., Zhang, Y., Han, S., et al. (2017). Frequency-specific alteration of functional connectivity density in antipsychotic-naive adolescents with early-onset schizophrenia. Journal of Psychiatric Research, 95, 68–75.Google Scholar
  85. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440–442.  https://doi.org/10.1038/30918.Google Scholar
  86. Wu, K., Taki, Y., Sato, K., Kinomura, S., Goto, R., Okada, K., Kawashima, R., He, Y., Evans, A. C., & Fukuda, H. (2012). Age-related changes in topological organization of structural brain networks in healthy individuals. Human Brain Mapping, 33(3), 552–568.  https://doi.org/10.1002/hbm.21232.Google Scholar
  87. Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.  https://doi.org/10.1371/journal.pone.0068910.Google Scholar
  88. Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.  https://doi.org/10.3389/fnsys.2010.00013.Google Scholar
  89. Yan, C. G., Craddock, R. C., Zuo, X. N., Zang, Y. F., & Milham, M. P. (2013). Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage, 80, 246–262.  https://doi.org/10.1016/j.neuroimage.2013.04.081.Google Scholar
  90. Yu, Q., Plis, S. M., Erhardt, E. B., Allen, E. A., Sui, J., Kiehl, K. A., Pearlson, G., & Calhoun, V. D. (2011). Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state. Frontiers in Systems Neuroscience, 5, 103.  https://doi.org/10.3389/fnsys.2011.00103.Google Scholar
  91. Yu, Q., Sui, J., Liu, J., Plis, S. M., Kiehl, K. A., Pearlson, G., & Calhoun, V. D. (2013). Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia. Schizophrenia Research, 143(1), 165–171.  https://doi.org/10.1016/j.schres.2012.11.001.Google Scholar
  92. Yu, R., Chien, Y. L., Wang, H. L. S., Liu, C. M., Liu, C. C., Hwang, T. J., Hsieh, M. H., Hwu, H. G., & Tseng, W. Y. I. (2014). Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Human Brain Mapping, 35(2), 627–637.Google Scholar
  93. Zalesky, A., Fornito, A., & Bullmore, E. (2012). On the use of correlation as a measure of network connectivity. Neuroimage, 60(4), 2096–2106.  https://doi.org/10.1016/j.neuroimage.2012.02.001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Biomedical Engineering of the Ministry of Education, Department of Biomedical EngineeringZhejiang UniversityZhejiangChina
  2. 2.Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordUSA
  3. 3.Department of Computer ScienceNational University of SingaporeSingaporeSingapore
  4. 4.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  5. 5.Department of General PsychiatryInstitute of Mental HealthSingaporeSingapore
  6. 6.Department of ResearchInstitute of Mental HealthSingaporeSingapore
  7. 7.Department of PsychologyNational University of SingaporeSingaporeSingapore
  8. 8.Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations