Presurgical localization and spatial shift of resting state networks in patients with brain metastases

ORIGINAL RESEARCH
  • 29 Downloads

Abstract

Brain metastases are the most prevalent cerebral tumors. Resting state networks (RSNs) are involved in multiple perceptual and cognitive functions. Therefore, precisely localizing multiple RSNs may be extremely valuable before surgical resection of metastases, to minimize neurocognitive impairments. Here we aimed to investigate the reliability of independent component analysis (ICA) for localizing multiple RSNs from resting-state functional MRI (rs-fMRI) data in individual patients, and further evaluate lesion-related spatial shifts of the RSNs. Twelve patients with brain metastases and 14 healthy controls were recruited. Using an improved automatic component identification method, we successfully identified seven common RSNs, including: the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN), language network (LN), sensorimotor network (SMN), auditory network (AN) and visual network (VN), in both individual patients and controls. Moreover, the RSNs in the patients showed a visible spatial shift compared to those in the controls, and the spatial shift of some regions was related to the tumor location, which may reflect a complicated functional mechanism - functional disruptions and reorganizations - caused by metastases. Besides, higher cognitive networks (DMN, ECN, DAN and LN) showed significantly larger spatial shifts than perceptual networks (SMN, AN and VN), supporting a functional dichotomy between the two network groups even in pathologic alterations associated with metastases. Overall, our findings provide evidence that ICA is a promising approach for presurgical localization of multiple RSNs from rs-fMRI data in individual patients. More attention should be paid to the spatial shifts of the RSNs before surgical resection.

Keywords

Brain metastases Resting state networks Independent component analysis Resting-state functional MRI 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81401482) and the Educational Commission of Sichuan Province of China (No. 17ZA0269). P. Thompson is funded in part by the NIH, under grant U54 EB020403 from the Big Data to Knowledge (BD2K) program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2018_9864_MOESM1_ESM.docx (6.4 mb)
ESM 1 (DOCX 6518 kb)

References

  1. Andersen, S. M., Rapcsak, S. Z., & Beeson, P. M. (2010). Cost function masking during normalization of brains with focal lesions: still a necessity? NeuroImage, 53, 78–84.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 1001–1013.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.CrossRefPubMedGoogle Scholar
  4. Brett, M., Leff, A. P., Rorden, C., & Ashburner, J. (2001). Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage, 14, 486–500.CrossRefPubMedGoogle Scholar
  5. Briganti, C., Sestieri, C., Mattei, P. A., Esposito, R., Galzio, R. J., Tartaro, A., et al. (2012). Reorganization of functional connectivity of the language network in patients with brain gliomas. AJNR - American Journal of Neuroradiology, 33, 1983–1990.CrossRefPubMedGoogle Scholar
  6. Brownsett, S. L., Warren, J. E., Geranmayeh, F., Woodhead, Z., Leech, R., & Wise, R. J. (2014). Cognitive control and its impact on recovery from aphasic stroke. Brain : a Journal of Neurology, 137, 242–254.CrossRefGoogle Scholar
  7. Chang, E. L., Wefel, J. S., Maor, M. H., Hassenbusch 3rd, S. J., Mahajan, A., Lang, F. F., et al. (2007). A pilot study of neurocognitive function in patients with one to three new brain metastases initially treated with stereotactic radiosurgery alone. Neurosurgery, 60, 277–283 discussion 283–274.CrossRefPubMedGoogle Scholar
  8. Charras, P., Herbet, G., Deverdun, J., de Champfleur, N. M., Duffau, H., Bartolomeo, P., et al. (2015). Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 63, 27–41.CrossRefPubMedGoogle Scholar
  9. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.CrossRefPubMedGoogle Scholar
  10. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103, 13848–13853.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Delattre, J. Y., Krol, G., Thaler, H. T., & Posner, J. B. (1988). Distribution of brain metastases. Archives of Neurology, 45, 741–744.CrossRefPubMedGoogle Scholar
  12. Ding, J. R., Liao, W., Zhang, Z., Mantini, D., Xu, Q., Wu, G. R., et al. (2011). Topological fractionation of resting-state networks. PLoS One, 6, e26596.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duffau, H. (2001). Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 506–513.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Esposito, R., Mattei, P. A., Briganti, C., Romani, G. L., Tartaro, A., & Caulo, M. (2012). Modifications of default-mode network connectivity in patients with cerebral glioma. PLoS One, 7, e40231.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.CrossRefPubMedGoogle Scholar
  16. Gavrilovic, I. T., & Posner, J. B. (2005). Brain metastases: epidemiology and pathophysiology. Journal of Neuro-Oncology, 75, 5–14.CrossRefPubMedGoogle Scholar
  17. Gooijers, J., Beets, I. A., Albouy, G., Beeckmans, K., Michiels, K., Sunaert, S., et al. (2016). Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain : a Journal of Neurology, 139, 2469–2485.CrossRefGoogle Scholar
  18. Hacker, C. D., Laumann, T. O., Szrama, N. P., Baldassarre, A., Snyder, A. Z., Leuthardt, E. C., et al. (2013). Resting state network estimation in individual subjects. NeuroImage, 82, 616–633.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huang, H., Ding, Z., Mao, D., Yuan, J., Zhu, F., Chen, S., et al. (2016). PreSurgMapp: a MATLAB toolbox for presurgical mapping of eloquent functional areas based on task-related and resting-state functional MRI. Neuroinformatics, 14, 421–438.CrossRefPubMedGoogle Scholar
  20. Jann, K., Kottlow, M., Dierks, T., Boesch, C., & Koenig, T. (2010). Topographic electrophysiological signatures of FMRI Resting State Networks. PLoS One, 5, e12945.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kokkonen, S. M., Nikkinen, J., Remes, J., Kantola, J., Starck, T., Haapea, M., et al. (2009). Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magnetic Resonance Imaging, 27, 733–740.CrossRefPubMedGoogle Scholar
  22. Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: a review of methods and clinical applications. AJNR - American Journal of Neuroradiology, 34, 1866–1872.CrossRefPubMedGoogle Scholar
  23. Li, Y. O., Adali, T., & Calhoun, V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping, 28, 1251–1266.CrossRefPubMedGoogle Scholar
  24. Liao, W., Chen, H., Feng, Y., Mantini, D., Gentili, C., Pan, Z., et al. (2010a). Selective aberrant functional connectivity of resting state networks in social anxiety disorder. NeuroImage, 52, 1549–1558.CrossRefPubMedGoogle Scholar
  25. Liao, W., Mantini, D., Zhang, Z., Pan, Z., Ding, J., Gong, Q., et al. (2010b). Evaluating the effective connectivity of resting state networks using conditional Granger causality. Biological Cybernetics, 102, 57–69.CrossRefPubMedGoogle Scholar
  26. Lin, X., & DeAngelis, L. M. (2015). Treatment of brain metastases. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33, 3475–3484.CrossRefGoogle Scholar
  27. Liu, H., Buckner, R. L., Talukdar, T., Tanaka, N., Madsen, J. R., & Stufflebeam, S. M. (2009). Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. Journal of Neurosurgery, 111, 746–754.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Martino, J., Honma, S. M., Findlay, A. M., Guggisberg, A. G., Owen, J. P., Kirsch, H. E., et al. (2011). Resting functional connectivity in patients with brain tumors in eloquent areas. Annals of Neurology, 69, 521–532.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mesulam, M. M. (1998). From sensation to cognition. Brain : a Journal of Neurology, 121(Pt 6), 1013–1052.CrossRefGoogle Scholar
  30. Mitchell, T. J., Hacker, C. D., Breshears, J. D., Szrama, N. P., Sharma, M., Bundy, D. T., et al. (2013). A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery, 73, 969–982 discussion 982–963.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8, 102–108.CrossRefPubMedGoogle Scholar
  32. Qi, R., Zhang, L. J., Xu, Q., Zhong, J., Wu, S., Zhang, Z., et al. (2012). Selective impairments of resting-state networks in minimal hepatic encephalopathy. PLoS One, 7, e37400.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Qiu, T. M., Yan, C. G., Tang, W. J., Wu, J. S., Zhuang, D. X., Yao, C. J., et al. (2014). Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation. Acta Neurochirurgica, 156, 2295–2302.CrossRefPubMedGoogle Scholar
  34. Rosazza, C., & Minati, L. (2011). Resting-state brain networks: literature review and clinical applications. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 32, 773–785.CrossRefGoogle Scholar
  35. Sair, H. I., Yahyavi-Firouz-Abadi, N., Calhoun, V. D., Airan, R. D., Agarwal, S., Intrapiromkul, J., et al. (2016). Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: comparison with task fMRI. Human Brain Mapping, 37, 913–923.CrossRefPubMedGoogle Scholar
  36. Schwarzkopf, D. S., De Haas, B., & Rees, G. (2012). Better ways to improve standards in brain-behavior correlation analysis. Frontiers in Human Neuroscience, 6, 200.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shimony, J. S., Zhang, D., Johnston, J. M., Fox, M. D., Roy, A., & Leuthardt, E. C. (2009). Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Academic Radiology, 16, 578–583.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shinoura, N., Suzuki, Y., Yamada, R., Kodama, T., Takahashi, M., & Yagi, K. (2006). Restored activation of primary motor area from motor reorganization and improved motor function after brain tumor resection. AJNR - American Journal of Neuroradiology, 27, 1275–1282.PubMedGoogle Scholar
  39. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22, 158–165.CrossRefPubMedGoogle Scholar
  40. Sills, A. K. (2005). Current treatment approaches to surgery for brain metastases. Neurosurgery, 57, S24–S32 discusssion S21–24.CrossRefPubMedGoogle Scholar
  41. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106, 13040–13045.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., et al. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17, 666–682.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stippich, C., Blatow, M., & Karkow, K. (2007). Presurgical functional MRI in patients with brain tumors. In C. Stippich (Ed.), Clinical functional MRI: Presurgical functional neuroimaging (pp. 87–134). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  44. Sunaert, S. (2006). Presurgical planning for tumor resectioning. Journal of Magnetic Resonance Imaging : JMRI, 23, 887–905.CrossRefPubMedGoogle Scholar
  45. Tie, Y., Rigolo, L., Norton, I. H., Huang, R. Y., Wu, W., Orringer, D., et al. (2014). Defining language networks from resting-state fMRI for surgical planning--a feasibility study. Human Brain Mapping, 35, 1018–1030.CrossRefPubMedGoogle Scholar
  46. Tieleman, A., Deblaere, K., Van Roost, D., Van Damme, O., & Achten, E. (2009). Preoperative fMRI in tumour surgery. European Radiology, 19, 2523–2534.CrossRefPubMedGoogle Scholar
  47. Vargo, M. M. (2017). Brain tumors and metastases. Physical Medicine and Rehabilitation Clinics of North America, 28, 115–141.CrossRefPubMedGoogle Scholar
  48. Vlieger, E. J., Majoie, C. B., Leenstra, S., & Den Heeten, G. J. (2004). Functional magnetic resonance imaging for neurosurgical planning in neurooncology. European Radiology, 14, 1143–1153.CrossRefPubMedGoogle Scholar
  49. Wood, J. M., Kundu, B., Utter, A., Gallagher, T. A., Voss, J., Nair, V. A., et al. (2011). Impact of brain tumor location on morbidity and mortality: a retrospective functional MR imaging study. AJNR - American Journal of Neuroradiology, 32, 1420–1425.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14, 339–351.CrossRefPubMedGoogle Scholar
  51. Yu, Q., Plis, S. M., Erhardt, E. B., Allen, E. A., Sui, J., Kiehl, K. A., et al. (2011). Modular organization of functional network connectivity in healthy controls and patients with Schizophrenia during the resting state. Frontiers in Systems Neuroscience, 5, 103.PubMedGoogle Scholar
  52. Zhang, D., Johnston, J. M., Fox, M. D., Leuthardt, E. C., Grubb, R. L., Chicoine, M. R., et al. (2009). Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery, 65, 226–236.PubMedPubMedCentralGoogle Scholar
  53. Zhang, H., Zuo, X. N., Ma, S. Y., Zang, Y. F., Milham, M. P., & Zhu, C. Z. (2010). Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis. NeuroImage, 51, 1414–1424.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Automation and Information EngineeringSichuan University of Science and EngineeringZigongPeople’s Republic of China
  2. 2.Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and InformaticsUniversity of Southern CaliforniaMarina del ReyUSA
  3. 3.Department of RadiologyZhejiang Provincial People’s HospitalHangzhouPeople’s Republic of China

Personalised recommendations