Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1759–1767 | Cite as

Altered gray matter volume in primary insomnia patients: a DARTEL-VBM study

  • Meng Li
  • Jianhao Yan
  • Shumei Li
  • Tianyue Wang
  • Hua Wen
  • Yi Yin
  • Shishun Fu
  • Luxian Zeng
  • Junzhang Tian
  • Guihua Jiang
ORIGINAL RESEARCH

Abstract

Previous neuroimaging studies have reported brain morphological alterations and the occurrence of mental disorders in primary insomnia (PI) patients. However, studies of the effect of disrupted sleep on brain structure have showed inconsistent results. In this study, DARTEL-VBM was used to evaluate the changes in gray matter volume from 60 PI patients and 53 controls. Voxel-wise statistics was performed in two ways. One is a more liberal statistical analysis using an uncorrected P < 0. 001 with 25 voxels, and the other one is a more conservative approach using a threshold of P < 0.05, corrected for multiple comparisons using the Gaussian random field (GRF) method. Partial correlation was used to analyze the relationship between abnormal volume and clinical features. PI patients had reduced gray matter volume primarily in the right middle cingulate cortex with correction (P < 0.05). Correlation analysis showed gray matter changes in the left middle cingulate cortex were negatively associated with self-ratings for anxiety and depression. This study showed that gray matter deficits in cingulate cortex in patients with insomnia, and the decreased gray matter volume may be associated with the difficulties in emotional management due to insomnia. Functional roles of the affected regions in emotion and regulation of sleep might provide supplementary evidence and guide further research that may facilitate understanding the mechanisms underlying insomnia.

Keywords

Primary insomnia Gray matter volume DARTEL-VBM Middle cingulate cortex Emotion 

Notes

Funding

This study was funded by the National Natural Science Foundation of China (Grant number: 81471639, 81771807, and 81701111), the Science and Technology Planning Project of Guangdong Province, China (Grant number: 2016A020215125, and 2017A020215077), the Natural Science Foundation of Guangdong Province, China (Grant number: 2015A030313723), and the Science and Technology Planning Project of Guangzhou, Guangdong, China (Grant number: 201607010056).

Compliance with ethical standards

Conflict of interest

Author Meng Li declare that they have no conflict of interest. Author Jianhao Yan declare that they have no conflict of interest. Author Shumei Li declare that they have no conflict of interest. Author Tianyue Wang declare that they have no conflict of interest. Author Hua Wen declare that they have no conflict of interest. Author Yi Yin declare that they have no conflict of interest. Author Shishun Fu declare that they have no conflict of interest. Author Luxian Zeng declare that they have no conflict of interest. Author Junzhang Tian declare that they have no conflict of interest. Guihua Jiang declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Allman, J. M., Hakeem, A., Erwin, J. M., Nimchinsky, E., & Hof, P. (2001). The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Annals of the New York Academy of Sciences, 935, 107–117.CrossRefGoogle Scholar
  2. Altena, E., Van Der Werf, Y. D., Strijers, R. L., & Van Someren, E. J. (2008). Sleep loss affects vigilance: effects of chronic insomnia and sleep therapy. Journal of Sleep Research, 17(3), 335–343.  https://doi.org/10.1111/j.1365-2869.2008.00671.x.CrossRefPubMedGoogle Scholar
  3. Altena, E., Vrenken, H., Van Der Werf, Y. D., van den Heuvel, O. A., & Van Someren, E. J. (2010). Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study. Biological Psychiatry, 67(2), 182–185.  https://doi.org/10.1016/j.biopsych.2009.08.003.CrossRefPubMedGoogle Scholar
  4. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.  https://doi.org/10.1016/j.neuroimage.2007.07.007.CrossRefPubMedGoogle Scholar
  5. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry–the methods. Neuroimage, 11(6 Pt 1), 805–821.  https://doi.org/10.1006/nimg.2000.0582.CrossRefPubMedGoogle Scholar
  6. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839–851.  https://doi.org/10.1016/j.neuroimage.2005.02.018.CrossRefPubMedGoogle Scholar
  7. Baglioni, C., Battagliese, G., Feige, B., Spiegelhalder, K., Nissen, C., Voderholzer, U.,.. . Riemann, D. (2011). Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. Journal of Affective Disorders, 135(1–3), 10–19.  https://doi.org/10.1016/j.jad.2011.01.011.CrossRefPubMedGoogle Scholar
  8. Baglioni, C., Spiegelhalder, K., Lombardo, C., & Riemann, D. (2010). Sleep and emotions: a focus on insomnia. Sleep Medicine Reviews, 14(4), 227–238.  https://doi.org/10.1016/j.smrv.2009.10.007.CrossRefPubMedGoogle Scholar
  9. Bastien, C. H., Vallieres, A., & Morin, C. M. (2001). Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Medicine, 2(4), 297–307.CrossRefGoogle Scholar
  10. Buysse, D. J., Reynolds, C. F., 3rd, Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213.Google Scholar
  11. Cardoso, E. F., Maia, F. M., Fregni, F., Myczkowski, M. L., Melo, L. M., Sato, J. R.,.. . Amaro, E. Jr. (2009). Depression in Parkinson’s disease: convergence from voxel-based morphometry and functional magnetic resonance imaging in the limbic thalamus. Neuroimage, 47(2), 467–472.  https://doi.org/10.1016/j.neuroimage.2009.04.059.CrossRefPubMedGoogle Scholar
  12. Chee, M. W., Tan, J. C., Zheng, H., Parimal, S., Weissman, D. H., Zagorodnov, V., & Dinges, D. F. (2008). Lapsing during sleep deprivation is associated with distributed changes in brain activation. Journal Neuroscience, 28(21), 5519–5528.  https://doi.org/10.1523/JNEUROSCI.0733-08.2008.CrossRefPubMedGoogle Scholar
  13. Davidson, R. J., Abercrombie, H., Nitschke, J. B., & Putnam, K. (1999). Regional brain function, emotion and disorders of emotion. Current Opinion in Neurobiology, 9(2), 228–234.CrossRefGoogle Scholar
  14. Davidson, R. J., Irwin, W., Anderle, M. J., & Kalin, N. H. (2003). The neural substrates of affective processing in depressed patients treated with venlafaxine. The American Journal of Psychiatry, 160(1), 64–75.  https://doi.org/10.1176/appi.ajp.160.1.64.CrossRefPubMedGoogle Scholar
  15. Finos, L., & Salmaso, L. (2007). FDR-and FWE-controlling methods using data-driven weights. Journal of Statistical Planning and Inference, 137(12), 3859–3870.CrossRefGoogle Scholar
  16. Glascher, J., Adolphs, R., Damasio, H., Bechara, A., Rudrauf, D., Calamia, M.,.. . Tranel, D. (2012). Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proceeding National Academy of Science of the United States of America, 109(36), 14681–14686.  https://doi.org/10.1073/pnas.1206608109.CrossRefGoogle Scholar
  17. Joo, E. Y., Kim, H., Suh, S., & Hong, S. B. (2014). Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep, 37(7), 1189–1198.  https://doi.org/10.5665/sleep.3836.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Joo, E. Y., Noh, H. J., Kim, J. S., Koo, D. L., Kim, D., Hwang, K. J.,.. . Hong, S. B. (2013). Brain gray matter deficits in patients with chronic primary insomnia. Sleep, 36(7), 999–1007.  https://doi.org/10.5665/sleep.2796.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kempton, M. J., Salvador, Z., Munafo, M. R., Geddes, J. R., Simmons, A., Frangou, S., & Williams, S. C. (2011). Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675–690.  https://doi.org/10.1001/archgenpsychiatry.2011.60.CrossRefPubMedGoogle Scholar
  20. Krausz, Y., Freedman, N., Lester, H., Barkai, G., Levin, T., Bocher, M.,.. . Bonne, O. (2007). Brain SPECT study of common ground between hypothyroidism and depression. International Journal Neuropsychopharmacol, 10(1), 99–106.  https://doi.org/10.1017/S1461145706006481.CrossRefGoogle Scholar
  21. Kripke, D. F., Garfinkel, L., Wingard, D. L., Klauber, M. R., & Marler, M. R. (2002). Mortality associated with sleep duration and insomnia. Archives of General Psychiatry, 59(2), 131–136.CrossRefGoogle Scholar
  22. Kyle, S. D., Morgan, K., & Espie, C. A. (2010). Insomnia and health-related quality of life. Sleep Medicine Reviews, 14(1), 69–82.  https://doi.org/10.1016/j.smrv.2009.07.004.CrossRefPubMedGoogle Scholar
  23. Leuner, B., & Shors, T. J. (2013). Stress, anxiety, and dendritic spines: what are the connections? Neuroscience, 251, 108–119.  https://doi.org/10.1016/j.neuroscience.2012.04.021.CrossRefPubMedGoogle Scholar
  24. Li, S., Tian, J., Bauer, A., Huang, R., Wen, H., Li, M.,.. . Jiang, G. (2016). Reduced integrity of right lateralized white matter in patients with primary insomnia: a diffusion-tensor imaging study. Radiology, 280(2), 520–528.  https://doi.org/10.1148/radiol.2016152038.CrossRefPubMedGoogle Scholar
  25. McNamee, D., Rangel, A., & O’Doherty, J. P. (2013). Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex. Nature Neuroscience, 16(4), 479–485.  https://doi.org/10.1038/nn.3337.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Morin, C. M., & Benca, R. (2012). Chronic insomnia. Lancet, 379(9821), 1129–1141.  https://doi.org/10.1016/S0140-6736(11)60750-2.CrossRefPubMedGoogle Scholar
  27. Murphy, M., Riedner, B. A., Huber, R., Massimini, M., Ferrarelli, F., & Tononi, G. (2009). Source modeling sleep slow waves. Proceeding of the National Academy of Sciences of the United States of America, 106(5), 1608–1613.  https://doi.org/10.1073/pnas.0807933106.CrossRefGoogle Scholar
  28. National Institutes of Health (2005). National institutes of health state of the science conference statement on manifestations and management of chronic insomnia in adults. Sleep, 28(9), 13–15. 1049–1057.Google Scholar
  29. Neylan, T. C., Mueller, S. G., Wang, Z., Metzler, T. J., Lenoci, M., Truran, D.,.. . Schuff, N. (2010). Insomnia severity is associated with a decreased volume of the CA3/dentate gyrus hippocampal subfield. Biological Psychiatry, 68(5), 494–496.  https://doi.org/10.1016/j.biopsych.2010.04.035.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Noh, H. J., Joo, E. Y., Kim, S. T., Yoon, S. M., Koo, D. L., Kim, D.,.. . Hong, S. B. (2012). The relationship between hippocampal volume and cognition in patients with chronic primary insomnia. Journal of Clinical Neurology, 8(2), 130–138.  https://doi.org/10.3988/jcn.2012.8.2.130.CrossRefPubMedGoogle Scholar
  31. Ohayon, M. M. (2002). Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev, 6(2), 97–111.CrossRefGoogle Scholar
  32. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefGoogle Scholar
  33. Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biological Psychiatry, 54(5), 504–514.CrossRefGoogle Scholar
  34. Piantoni, G., Poil, S. S., Linkenkaer-Hansen, K., Verweij, I. M., Ramautar, J. R., Van Someren, E. J., & Van Der Werf, Y. D. (2013). Individual differences in white matter diffusion affect sleep oscillations. Journal of Neurosciences, 33(1), 227–233.  https://doi.org/10.1523/JNEUROSCI.2030-12.2013.CrossRefGoogle Scholar
  35. Poline, J. B., Worsley, K. J., Evans, A. C., & Friston, K. J. (1997). Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage, 5(2), 83–96.  https://doi.org/10.1006/nimg.1996.0248.CrossRefPubMedGoogle Scholar
  36. Riemann, D., & Voderholzer, U. (2003). Primary insomnia: a risk factor to develop depression? Journal of Affective Disorders, 76(1–3), 255–259.CrossRefGoogle Scholar
  37. Riemann, D., Voderholzer, U., Spiegelhalder, K., Hornyak, M., Buysse, D. J., Nissen, C.,.. . Feige, B. (2007). Chronic insomnia and MRI-measured hippocampal volumes: a pilot study. Sleep, 30(8), 955–958.CrossRefGoogle Scholar
  38. Sadaghiani, S., Scheeringa, R., Lehongre, K., Morillon, B., Giraud, A. L., & Kleinschmidt, A. (2010). Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. Journal of Neuroscience, 30(30), 10243–10250.  https://doi.org/10.1523/JNEUROSCI.1004-10.2010.CrossRefPubMedGoogle Scholar
  39. Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Natural Reviews Neuroscience, 12(3), 154–167.  https://doi.org/10.1038/nrn2994.CrossRefGoogle Scholar
  40. Spiegelhalder, K., Regen, W., Baglioni, C., Kloppel, S., Abdulkadir, A., Hennig, J.,.. . Feige, B. (2013). Insomnia does not appear to be associated with substantial structural brain changes. Sleep, 36(5), 731–737.  https://doi.org/10.5665/sleep.2638.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Squire, R. F., Noudoost, B., Schafer, R. J., & Moore, T. (2013). Prefrontal contributions to visual selective attention. Annual Review of Neuroscience, 36, 451–466.  https://doi.org/10.1146/annurev-neuro-062111-150439.CrossRefPubMedGoogle Scholar
  42. Stoffers, D., Moens, S., Benjamins, J., van Tol, M. J., Penninx, B. W., Veltman, D. J.,.. . Van Someren, E. J. (2012). Orbitofrontal gray matter relates to early morning awakening: a neural correlate of insomnia complaints? Front Neurology, 3, 105.  https://doi.org/10.3389/fneur.2012.00105.CrossRefGoogle Scholar
  43. Szily, E., & Keri, S. (2008). Emotion-related brain regions. Ideggyogy Sz, 61(3–4), 77–86.PubMedGoogle Scholar
  44. Taylor, D. J., Lichstein, K. L., Durrence, H. H., Reidel, B. W., & Bush, A. J. (2005). Epidemiology of insomnia, depression, and anxiety. Sleep, 28(11), 1457–1464.CrossRefGoogle Scholar
  45. Venkatraman, V., Chuah, Y. M., Huettel, S. A., & Chee, M. W. (2007). Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions. Sleep, 30(5), 603–609.CrossRefGoogle Scholar
  46. Wang, T., Li, S., Jiang, G., Lin, C., Li, M., Ma, X.,.. . Tian, J. (2016). Regional homogeneity changes in patients with primary insomnia. European Radiology, 26(5), 1292–1300.  https://doi.org/10.1007/s00330-015-3960-4.CrossRefPubMedGoogle Scholar
  47. Winkelman, J. W., Benson, K. L., Buxton, O. M., Lyoo, I. K., Yoon, S., O’Connor, S., & Renshaw, P. F. (2010). Lack of hippocampal volume differences in primary insomnia and good sleeper controls: an MRI volumetric study at 3 T. Sleep Medicine, 11(6), 576–582.  https://doi.org/10.1016/j.sleep.2010.03.009.CrossRefPubMedGoogle Scholar
  48. Yassa, M. A., & Stark, C. E. (2009). A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. Neuroimage, 44(2), 319–327.  https://doi.org/10.1016/j.neuroimage.2008.09.016.CrossRefPubMedGoogle Scholar
  49. Zhang, H., Nichols, T. E., & Johnson, T. D. (2009). Cluster mass inference via random field theory. Neuroimage, 44(1), 51–61.  https://doi.org/10.1016/j.neuroimage.2008.08.017.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Department of Medical ImagingGuangdong Second Provincial General HospitalGuangzhouPeople’s Republic of China
  2. 2.The Department of Science and EducationGuangdong Second Provincial General HospitalGuangzhouPeople’s Republic of China

Personalised recommendations