Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1720–1729 | Cite as

The way to “left” Piazza del Popolo: damage to white matter tracts in representational neglect for places

  • Maddalena Boccia
  • Antonella Di Vita
  • Liana Palermo
  • Giorgia Committeri
  • Laura Piccardi
  • Cecilia Guariglia


The ability of seeing with the mind’s eye, the visual mental imagery, is peculiarly compromised in patients with representational neglect. Representational neglect affects the processing of the left side of a mental image and may selectively concern the ability to imagine places and/or objects. Right-brain damaged patients with representational neglect for places (RN+) lose the ability to imagine themselves within a familiar place and fail in transforming an egocentric representation of the environment into an allocentric one and vice-versa. A peak region located at the posterior junction between the parietal and temporal lobes has emerged as pivotal in determining representational neglect for places. Here we aimed at verifying whether white matter disconnections affecting parietal lobe, by preventing the integration of egocentric information with the allocentric one, play a role in representational neglect for places. A track-wise statistical analysis on 58 right brain damaged patients, with and without extrapersonal perceptual neglect and/or representational neglect for places, suggests that the disconnection of the superior longitudinal fasciculus and that of the posterior arcuate segment, together with the disconnection of a fronto-parietal u-shaped tract, may be crucial in determining the representational neglect for places. These results suggest that representational neglect for places emerges from a complex pattern of lesion location and disconnection that involves parietal, temporal and frontal lobes.


Imaginal neglect Human navigation Mental imagery MRI Hodological lesion symptom mapping 


Compliance with ethical standards

Conflict of interest

MB declares that she has no conflict of interest. ADV declares that she has no conflict of interest. LPa declares that she has no conflict of interest. LPi declares that she has no conflict of interest. GC declares that she has no conflict of interest. CG declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

11682_2018_9839_MOESM1_ESM.docx (73 kb)
Supplementary material 1 (DOCX 73 KB)


  1. Bartolomeo, P., D’Erme, P., & Gainotti, G. (1994). The relationship between visuospatial and representational neglect. Neurology, 44, 1710–1714.CrossRefGoogle Scholar
  2. Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450.CrossRefGoogle Scholar
  3. Bisiach, E., & Luzzatti, C. Unilateral neglect of representational space (1978). Cortex. 14: 129–133.Google Scholar
  4. Boccia, M., Guariglia, C., Sabatini, U., & Nemmi, F. (2015a). Navigating toward a novel environment from a route or survey perspective: neural correlates and context-dependent connectivity. Brain Structure and Function, 221(4), 2005–2021.CrossRefGoogle Scholar
  5. Boccia, M., Nemmi, F., & Guariglia, C. (2014a). Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants. Neuropsychol Review, 24(2), 236–251.CrossRefGoogle Scholar
  6. Boccia, M., Piccardi, L., Palermo, L., Nemmi, F., Sulpizio, V., Galati, G., & Guariglia, C. (2014b). One’s own country and familiar places in the mind’s eye: different topological representations for navigational and non-navigational contents. Neuroscience Letters, 579, 52–57.CrossRefGoogle Scholar
  7. Boccia, M., Piccardi, L., Palermo, L., Nemmi, F., Sulpizio, V., Galati, G., & Guariglia, C. (2015b). A penny for your thoughts! patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Human Brain Mapping, 36(3), 945–958.CrossRefGoogle Scholar
  8. Boccia, M., Sulpizio, V., Nemmi, F., Guariglia, C., & Galati, G. (2017a). Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting state functional connectivity. Brain Structure and Function, 222(4), 1945–1957.CrossRefGoogle Scholar
  9. Boccia, M., Sulpizio, V., Palermo, L., Piccardi, L., Guariglia, C., & Galati, G. (2017b). I can see where you would be: Patterns of fMRI activity reveal imagined landmarks. Neuroimage, 144(Pt A), 174–182.CrossRefGoogle Scholar
  10. Brett, M., Leff, A. P., Rorden, C., & Ashburner, J. (2001). Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage, 14(2), 486–500.CrossRefGoogle Scholar
  11. Burgess, N., Becker, S., King, J. A., & O’Keefe, J. (2001). Memory for events and their spatial context: Models and experiments. Philosophical Transactions of the Royal Society B, 356, 1493–1503.CrossRefGoogle Scholar
  12. Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological review, 114, 340–375.CrossRefGoogle Scholar
  13. Catani, M., Dell’Acqua, F., Vergani, F., Malik, F., Hodge, H., Roy, P., et al. (2012). Short frontal lobe connections of the human brain. Cortex, 48(2), 273–291.Google Scholar
  14. Committeri, G., Piccardi, L., Galati, G., & Guariglia, C. (2015). Where did you “left” Piazza del Popolo? At your “right” temporo-parietal junction. Cortex, 73, 106–111.CrossRefGoogle Scholar
  15. Coslett, B. H. (1997). Neglect in vision and visual imagery: a double dissociation. Brain, 120, 1163–1171.CrossRefGoogle Scholar
  16. Doricchi, F. (2003). The anatomy of neglect without hemianopia: a key role for parietal-frontal disconnection. Neuroreport, 14, 2239–2243.CrossRefGoogle Scholar
  17. Doricchi, F., Thiebaut de Schotten, M., Tomaiuolo, F., & Bartolomeo, P. (2008). White matter (dis)connections and grey matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. Cortex, 44(8), 983–995.CrossRefGoogle Scholar
  18. Grossi, D., Modafferi, A., Pelosi, L., & Trojano, L. (1989). On the different roles of the cerebral hemispheres in mental imagery: the “O’Clock Test” in two clinical cases. Brain and Cognition, 10(1), 18–27.CrossRefGoogle Scholar
  19. Guariglia, C., Padovani, A., Pantano, P., & Pizzamiglio, L. (1993). Unilateral neglect restricted to visual imagery. Nature, 364(6434), 235–237.CrossRefGoogle Scholar
  20. Guariglia, C., Palermo, L., Piccardi, L., Iaria, G., & Incoccia, C. (2013). Neglecting the left side of a city square but not the left side of its clock: prevalence and characteristics of representational neglect. PLoS One, 8(7), e67390.CrossRefGoogle Scholar
  21. Guariglia, C., Piccardi, L., Iaria, G., Nico, D., & Pizzamiglio, L. (2005). Representational neglect and navigation in real space. Neuropsychologia, 43(8), 1138–1143.CrossRefGoogle Scholar
  22. Guariglia, C., & Pizzamiglio, L. (2006). Spatial navigation-cognitive and neuropsychological aspects. In T. Vecchi & G. Bottini, ediotors. Imagery and Spatial Cognition. Amsterdam: John Benjamins.Google Scholar
  23. Guariglia, C., & Pizzamiglio, L. (2007). The role of imagery in navigation: Neuropsychological evidence. In F. Mast & F. Jancke (Eds.), Spatial Processing in Navigation, Imagery and Perception. New York: Springer.Google Scholar
  24. Karnath, H. O., Rennig, J., Johannsen, L., & Rorden, C. (2011). Reply: ‘The anatomy underlying acute versus chronic spatial neglect’ also depends on clinical tests. Brain, 135(2), e208-e208.Google Scholar
  25. Karnath, H. O., Rennig, J., Johannsen, L., & Rorden, C. (2011a). The anatomy underlying acute versus chronic spatial neglect: a longitudinal study. Brain, 134(Pt 3), 903–912.CrossRefGoogle Scholar
  26. Kosslyn, S. M. (1980). Image and Mind. Image and Mind. Cambridge, MA: Harvard University Press.Google Scholar
  27. Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT Press.Google Scholar
  28. Kosslyn, S. M. (2005). Mental images and the brain. Cognitive Neuropsychology, 22, 333–347.CrossRefGoogle Scholar
  29. Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217 – 30.CrossRefGoogle Scholar
  30. Kriegeskorte, N., & Bandettini, P. (2007a). Analyzing for information, not activation, to exploit high-resolution fMRI. Neuroimage, 38, 649–662.CrossRefGoogle Scholar
  31. Kriegeskorte, N., & Bandettini, P. (2007b). Combining the tools: activation- and in-formation-based fMRI analysis. Neuroimage, 38, 666–668.CrossRefGoogle Scholar
  32. Lunven, M., De Schotten, T., Bourlon, M., Duret, C., Migliaccio, C., Rode, R., G., & Bartolomeo, P. (2015). White matter lesional predictors of chronic visual neglect: a longitudinal study. Brain, 138(Pt 3), 746–760.Google Scholar
  33. Nico, D., Piccardi, L., Iaria, G., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Landmark based navigation in brain-damaged patients with neglect. Neuropsychologia, 46(7), 1898–1907.CrossRefGoogle Scholar
  34. Ortigue, S., Viaud-Delmon, I., Annoni, J. M., Landis, T., Michel, C., Blanke, O., Vuilleumier, P., & Mayer, E. (2001). Pure representational neglect after right thalamic lesion. Annals of Neurology, 50(3), 401–404.CrossRefGoogle Scholar
  35. Ortigue, S., Viaud-Delmon, I., Michel, C. M., Blanke, O., Annoni, J. M., Pegna, A., Mayer, E., Spinelli, L., & Landis, T. (2003). Pure imagery hemi-neglect of far space. Neurology, 60(12), 2000–2002.CrossRefGoogle Scholar
  36. Palermo, L., Nori, R., Piccardi, L., Giusberti, F., & Guariglia, C. (2010). Environment and object mental images in patients with representational neglect: Two case reports. Journal of the International Neuropsychological Society, 16(5), 921–932.Google Scholar
  37. Palermo, L., Ranieri, G., Nemmi, F., & Guariglia, C. Cognitive maps in imagery neglect (2012). Neuropsychologia. 50: 904–912.Google Scholar
  38. Pearson, D. G., Logie, R. H., & Green, C. (1996). Mental manipulation, visual working memory, and executive processes. Psychologische Beitrage, 38(3/4), 324–342.Google Scholar
  39. Piccardi, L. (2009). Representational neglect and navigation in virtual space. Cognitive Neuropsychology, 26(3), 247–265.CrossRefGoogle Scholar
  40. Piccardi, L., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Pure representational neglect and navigational deficits in a case with preserved visuo-spatial working memory. Neurocase, 14(4), 329–342.CrossRefGoogle Scholar
  41. Pizzamiglio, L., Judica, A., Razzano, C., & Zoccolotti, P. (1989). Toward a comprehensive diagnosis of visual-spatial disorders in unilateral brain damaged patients. Psychological Assessment, 5, 199–218.Google Scholar
  42. Rode, G., Cotton, F., Revol, P., Jacquin-Courtois, S., Rossetti, Y., & Bartolomeo, P. (2010). Representation and disconnection in imaginal neglect. Neuropsychologia, 48(10), 2903–2911.CrossRefGoogle Scholar
  43. Rojkova, K., Volle, E., Urbanski, M., Humbert, F., Dell’Acqua, F., & Thiebaut de Schotten, M. (2016). Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study. Brain Structure and Function, 221(3), 1751–1766.CrossRefGoogle Scholar
  44. Rorden, C., Karnath, H. O., & Bonilha, L. (2007). Improving lesion-symptom mapping. Journal of Cognitive Neuroscience, 19(7), 1081–1088.CrossRefGoogle Scholar
  45. Saj, A., Verdon, V., Vocat, R., & Vuilleumier, P. (2012). ‘The anatomy underlying acute versus chronic spatial neglect’ also depends on clinical tests. Brain, 135(Pt 2), e207; author reply e208.Google Scholar
  46. Sulpizio, V., Boccia, M., Guariglia, C., & Galati, G. (2017). Implicit coding of location and direction in a familiar, real-world “vista” space. Behav Brain Res, 319, 16–24.CrossRefGoogle Scholar
  47. Thiebaut de Schotten, M., Dell’Acqua, F., Ratiu, P., Leslie, A., Howells, H., Cabanis, E., Iba-Zizen, M. T., Plaisant, O., Simmons, A., Dronkers, N. F., Corkin, S., & Catani, M. (2015). From Phineas Gage and Monsieur Leborgne to H.M.: Revisiting Disconnection Syndromes. Cerebral Cortex, 25(12), 4812–4827.CrossRefGoogle Scholar
  48. Thiebaut de Schotten, M., Ffytche, D. H., Bizzi, A., Dell’Acqua, F., Allin, M., Walshe, M., Murray, R., Williams, S. C., Murphy, D. G., & Catani, M. (2011). Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage, 54(1), 49–59.CrossRefGoogle Scholar
  49. Thiebaut De Schotten, M., Tomaiuolo, F., Aiello, M., Merola, S., Silvetti, M., Lecce, F., Bartolomeo, P., & Doricchi, F. (2014). Damage to white matter pathways in subacute and chronic spatial neglect: A group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cerebral Cortex, 24, 691–706.CrossRefGoogle Scholar
  50. Urbanski, M., Brechemier, M. L., Garcin, B., Bendetowicz, D., Thiebaut de Schotten, M., Foulon, C., Rosso, C., Clarencon, F., Dupont, S., Pradat-Diehl, P., Labeyrie, M. A., Levy, R., & Volle, E. (2016). Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications. Brain, 139(Pt 6), 1783–1799.CrossRefGoogle Scholar
  51. Urbanski, M., Thiebaut de Schotten, M., Rodrigo, S., Oppenheim, C., Touze, E., Meder, J. F., Moreau, K., Loeper-Jeny, C., Dubois, B., & Bartolomeo, P. (2011). DTI-MR tractography of white matter damage in stroke patients with neglect. Experimental Brain Research, 208(4), 491–505.CrossRefGoogle Scholar
  52. Wolbers, T., & Wiener, J. M. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Front Hum Neurosci, 8, 571.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychology“Sapienza” University of RomeRomeItaly
  2. 2.Cognitive and Motor Rehabilitation UnitIRCCS Fondazione Santa Lucia of RomeRomeItaly
  3. 3.Department of Medical and Surgical SciencesMagna Graecia University of CatanzaroCatanzaroItaly
  4. 4.Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies - ITABG. D’Annunzio UniversityChietiItaly
  5. 5.Department of Life, Health and Environmental SciencesL’Aquila UniversityL’aquilaItaly

Personalised recommendations